

PID studies with AHCAL on CERN SPS beam purity

Xin Xia

Institute of high energy physics On behalf of the CEPC calorimeter working group CALICE Collaboration meeting, Sep. 28 2023

Outline

- Introduction
- Cut-based PID
- ML-based PID
 - BDT
 - ANN
- Comparison and validation
- Summary

> CEPC

- Future electron-positron collider
- Physics goal: Precise measurements of the Higgs/EW/QCD
- Challenge: Jet resolution ~ $30\%/\sqrt{E}$, BMR ~ 3-4%
- > PFA-oriented calorimeter: various options explored in the CALICE collaboration
 - Focus in this talk: AHCAL with high granularity

CEPC AHCAL prototype configuration

- Active material: scintillator tiles + SiPM
- Absorber: stainless steel
- Transverse size $72 \times 72 \text{ cm}^2$, 40 longitudinal layers (~4.6 λ_0)
- Granularity $4 \times 4 \text{ cm}^2$, 12960 readout channels
- ~5 ton in weight
- Developed during 2018 2022

Beam test at CERN at SPS H2 beamline at 2023/05

- ~ 11 billion pion events from 10GeV to 120GeV
- ~ 4 billion electron events from 10GeV to 250GeV

AHC	AL Data List of	Pion	AHCAL Data List of Electron					
Momentum (GeV)	Total Runs	Number of Events	Momentum (GeV)	Total Runs	Number of Events			
10	6	1027814	10	2	238139			
15	4	953774	20	1	573677			
20	4	749791	30	2	556570			
30	4	1081725	40	1	421484			
40	5	1038984	50	2	743810			
50	5	1258699	60	1	377014			
60	6	1034938	70	3	580935			
70	5	1058822	80	1	273278			
80	7	1073061	100	1	289511			
100	7	1286608	120	1	242049			
120	6	1036400	150	2	415991			
			250	1	121850			

- > The data contains:
 - Noise, MIP, Electron, Hadron
 - Multiple injection events
- > In order to:

. . .

- Fully understand data components
- Further quantify the detector response
- > PID method developed:
 - Cut-based PID
 - BDT
 - ANN

Cut-based PID: Variables

- Fractal dimension^[1]:
 - Definition : $FD_{\alpha} = \left\langle \frac{\log(R_{\alpha})}{\log(\alpha)} \right\rangle$, $R_{\alpha} = \frac{N}{N_{\alpha}}$, $FD = 0.1 \cdot \sum_{\alpha} FD_{\alpha}$, $\alpha = 2, 3, 4, 5, 6, 7, 8, 9, 10, 20$
 - α : the scale at which the shower is analyzed ,
 - N : total number of hits
 - N_{α} : the number of hits at scale α
 - Dedicated for high granularity calorimeter
- > Average Hit Energy : $< E_{Hit} >$
 - Definition : $\langle E_{Hit} \rangle = \frac{Event Energy}{Num. of Hits}$
 - Progress in MC/Data consistency

[1] M. Ruan et al, PRL 112, 012001

5

Cut-based PID: Performance

- > FD-< E_{Hit} > Diagram
 - Shows good pattern recognition capability
 - Shows good PID capability
 - With artificial cut, for π , $\varepsilon = 94.1\%$,

p = 99.1% @ 50 GeV MC sample

Cut-based PID: Data Components

- Use cut-based PID method, analyze data taken at SPS H2
 - Observe different components
 - Calculate fractions by artificial cut (see backup)

Cut-based PID: Purity Analysis

- > Beam purity @ SPS H2 beamline at 2023:
 - Electron beam: purity > 80%
 - Pion beam:
 - increases with increasing energy
 - purity > 80% when Energy > 30 GeV
 - Lots of electron events mixed in low-energy
 - Noise is the dominant factor affecting beam purity.

- Method: BDT and ANN > Sample: MC + Data (tagged with Cherenkov/FD)
- Monte Carlo Samples: Employ Geant4 11.1.1 Toolkit with the QGSP_{BERT} physics list.

Energy point	5 GeV		10 GeV		30 GeV		50 GeV		60 GeV		80 GeV		100 GeV		120 GeV	
Energy point	#	Source	#	Source	#	Source	#	Source	#	Source	#	Source	#	Source	#	Source
Muon	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC
Electron	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC
Pion	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC	10k	MC

• Test Beam Samples: Pre-processed purer 2023 CERN SPS-H2 & PS-T9 test beam data.

Energy point	5 GeV		10 GeV		30 GeV		50 GeV		60 GeV		80 GeV		100 GeV		120 GeV	
Energy point	#	Source	#	Source	#	Source	#	Source	#	Source	#	Source	#	Source	#	Source
Muon	-	-	40k	Data	-	-	-	-	-	-	-	-	40k	Data	-	-
Electron	10k	Data	10k	Data	10k	Data	10k	Data	10k	Data	10k	Data	10k	Data	10k	Data
Pion	10k	Data	10k	Data	10k	Data	10k	Data	10k	Data	10k	Data	10k	Data	10k	Data

Each sample set is split to a Train set and a Test set in a ration of 3:2. Each sample set would be utilized to build classifiers.

BDT-based PID

Boosting Decision Tree (BDT)

- Apply Extreme Gradient Boosting
- Energy-independent variables

Rank: Variable	Variable weight	
1: Shower radius	0.377	
2: Shower layers	0.232	
3: Hits number	0.088	
4: Fired layers	0.083	
5: Shower start	0.080	
6: Shower density	0.049	
7: Z width	0.034	5
8: FD ₆	0.017	
9: FD ₁	0.015	
10: Shower layer ratio	0.014	
11: Shower end	0.006	
12: Shower length	0.006	

MC samples

Data samples

Rank: Variable	Variable weigh
1: Shower radius	0.379
2: Shower layers	0.228
3: Hits number	0.133
4: Shower density	0.058
5: Fired layers	0.058
6: Z width	0.042
7: Shower start	0.039
8: FD ₆	0.019
9: FD ₁	0.016
10: Shower layer ratio	0.010
11: Shower length	0.010
12: Shower end	0.008

ANN-based PID

- Cell-based Artificial Neural Networks (ANN) ^[1]
 - Input: spatial energy deposition in AHCAL ($18 \times 18 \times 40$)
 - output: probability of each particle type candidate
 - Architecture: take the advantage of the Residual Block
 - Make full use of high-dimensional input

[1] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.

ML-based PID performance comparison Siyuan Song

ANN performs better than BDT in terms of background rejection and pion purity, for both MC samples and data.

	9	0%	9:	5%	99%			
	MC Data		MC	Data	МС	Data		
BDT bkg. rejection	1701.2	1448.5	617.4	691.6	29.6	143.0		
ANN bkg. rejection	2015.7 3811.2		1040.3 1408.5		103.9	187.8		
Improvement	↑ 18.49%	↑ 163.12%	↑ 68.51 %	↑ 103.65 %	↑ 251.14%	↑ 31.37%		
BDT pion purity	0.998	0.998	0.996	0.996	0.923	0.983		
ANN pion purity	0.999	0.999	0.998	0.998	0.980	0.989		
Improvement	↑0.05%	↑ 0.13%	↑↑ 0.21%	↑ 0.22%	↑ 6.20%	↑ 0.61%		

14

<u>____</u>

Comparison and Validation

- The difference of data purity between cut-based PID and ANN
 - within $\pm 1\%$ for pion beam

• within $\pm 5\%$ for electron beam

Summary

- Three PID methods are developed
 - Cut-based: Fractal dimension, Average Hit Energy
 - BDT-based: Energy-independent variables
 - ANN-based: spatial energy deposition
- > Performance comparison:
 - Cut-based: $\varepsilon = 94.1\%$, p = 99.1% (50GeV MC sample)
 - BDT-based: $\varepsilon = 95 \%$, p = 99.6% (MC sample uniform ranged from 0-120 GeV)
 - ANN-based: $\varepsilon = 95 \%$, p = 99.8% (MC sample uniform ranged from 0-120 GeV)
- The corresponding component fractions are estimated, and the results from cut-based PID and ANN are consistent.
 - > 80% for electron and pion beams with > 30 GeV

中國科學院為能物招酬完備 Institute of High Energy Physics Chinese Academy of Sciences

Thanks for your attention!

Xin Xia Institute of high energy physics On behalf of the CEPC calorimeter working group CALICE Collaboration meeting, Sep. 28 2023

中國科學院為能物路湖紀所 Institute of High Energy Physics Chinese Academy of Sciences

Backup !

Xin Xia 2023/9/26

Num. of hits

S

Evolute versus Incident Energy: Electron Beam

Evolute versus Incident Energy: Pion Beam

Component Highlight: E

Characteristics:

- Shape: Shower Like
- Energy: More low energy (< 0.5 MIP) hits in inner region of shower
- Found in:
 - Electron + pion beams
 - SPS H8 (2022) + SPS H2 (2023)

2023/9/26

Component Highlight: F

Characteristics:

- Shape: EM. like ۲
- More hits and higher energy deposition ٠
- Only in electron beam taking at SPS H2 at 2023 ۲

Count

 10^{3}

 10^{2}

Data 80GeV e-Data Total

Data Componet B

Data Componet F

1000

ANN architecture

• Architecture: take the advantage of the Residual Block

ANN-based PID: Performance

Siyuan Song

- > ANN_{MC} is trained on MC samples
 - At 95% pion signal efficiency:

Bkg. Rejection: 1040.3 ($N_{Bkg}/N_{sel.}$),

pion purity: 99.8%

- $> ANN_{Data}$ is trained on test beam data
 - At 95% pion signal efficiency,

Bkg. Rejection: 1408.5 ($N_{Bkg}/N_{sel.}$),

pion purity: 99.8%

BDT-based PID: Performance

Siyuan Song

- \succ BDT_{MC} is trained on MC samples
 - At 95% pion signal efficiency,

Bkg. Rejection: 617.4 ($N_{Bkg}/N_{sel.}$)

pion purity: 99.6%

- $> BDT_{Data}$ is trained on test beam data
 - At 95% pion signal efficiency, •

Bkg. Rejection: 691.6 ($N_{Bkg}/N_{sel.}$)

pion purity: 99.6%

0.7 0.8 0.9

101

Pion

Cherenkov

At 5 GeV, 20k pion from Cherenkov identification, 19.357k events are also identified by ANN. Ratio = 96.8%

