Status on Supervised Jet Clustering with GNNs and Spectral Clustering

ILD Software Analysis Meeting | 2024/03/13

Bryan Bliewert

DESY & Technical University of Munich

Jets in the ZHH-Analysis

Graphs and Graph Neural Networks (GNNs)

> Graph: set of

- nodes (e.g. Particle Flow Objects (PFOs) with four-momenta as properties)
- edges/links, i.e. connections between nodes (e.g.: two PFOs linked they belong to same cluster)
- (global) graph attributes (e.g. is signal/background event)
- > example:

Data Preparation & Comparison

- Goal: improve reconstruction by reducing misclustering
- > Metric: compare what *is* and *should* be in the jet
 - ground truth given by TrueJet (uses MCRecoTruthLink)
 - **benchmark ratios** $r_x = \frac{E_{intersection}}{E_{x,total}}$ (for x = true, reco)
 - intersection: PFOs which are in both the true and reconstructed dijets
 - Procedure: (for Durham and GNN)
 - each jet is matched to a true jet by closest angular matching
 - the jets are combined to dijets by the matching given by truejet (combined to *initial color neutrals*)

Idea of the GNN-SC model

- edge-scorer based on <u>GNN layers</u> learns to calculate a similarity between two PFO here: score for whether or not they belong into the same jet (ground-truth labels given by <u>TrueJet</u>)
- Spectral Clustering is then used on the resulting affinity matrix to form "jets"

> design decisions:

- permutation invariance built in by using pairwise dot products of node embeddings
- however, no IR/C-safety enforced in model
- training and hyperparam. optimization in Python, inference possible in Marlin (<u>JetConvProcessor</u>)

Status on Supervised Jet Clustering with GNNs and Spectral Clustering | ILD Software Analysis Meeting | 2024/03/13

Data Preparation & Comparison

- > Training on ZHH events $ZHH \rightarrow \mu \overline{\mu} b \overline{b} b \overline{b}$
- > No gluon splittings $g \rightarrow gg$ or $g \rightarrow q\overline{q}$ (by imposing n=4 hadronic true jets)
- > filter out isolated leptons and recover ISR/BS photons before clustering for both Durham and the GNN (iso-leptons only if they pass cut on $M_{l\bar{l}}$)
- Input information:
 - GNN : PFO four momenta
 - Durham@LCFIPlus : PFO four momenta + vertexing information
 - Durham only : PFO four momenta

Results: Dijet mass reconstruction

Results: Dijet mass reconstruction / Misclustering

Durham

GNN-SC

DESY.

Results: Misclustering

Results on ZZH events

Weighting edges during training by energy

- > Idea: weight w_{ij} for each edge between PFOs i, j
- > Many possibilities for energy-weighting (GNNSC-EW model):
 - Here: normalized geometric mean: $w_{ij} = \frac{\sqrt{E_i^2 + E_j^2}}{A}$
 - Durham-motivated: $2\min\{E_i, E_j\} \cdot (1 \cos \theta_{ij})$

Energy weighted training

Thank you!

Backup

Architecture: Edge Scorer

Misclustering on ZZH events

