### Higgs group parallel sessions

- 1. Today, 4 contributions
- Precise measurements of the SM Higgs at ILC, simul and analysis (Valeri SAVELIEV)
- Higgs recoil mass analysis with full simul and reconstruction (Martin OHLERICH)
- Correct treatment of external Higgs bosons and effective Higgs couplings (Sven HEINEMEYER)
- Precise calculations for H → WW/ZZ → 4 fermions with PROPHECY4f (Stefan DITTMAIER)
- 2. Tomorrow, 3 contributions and discussion

#### Today's agenda

- Revisited Higgs trilinear coupling measurement (D. Boumedienne)
- Is there a chance to « identify » HHZ → 10 jets? (P. Lutz)
- How to optimise the ILC energy for measuring HZ (F. Richard)
- Discussion « ILC parameters »

# Questions from the Parameter group

to the Higgs group

## Specific questions (1)

- Assuming a Higgs mass of 120 GeV, what is the achievable precision for the mass measurement? Please provide information for three energies:
  - 1/ threshold scan,
  - 2/ at the maximum of the ZH cross section
  - 3/500 GeV

# Higgs mass

|             | Threshold scan  | 350 GeV     |      |
|-------------|-----------------|-------------|------|
| Needed L    | 100fb-1 on 5pts | 500 fb-1    |      |
|             |                 | Pure recoil | qqbb |
| Precision   | 230 MeV         | 103         | 42   |
| Beamst*2    | 230 MeV * 1.4   | *3          | *1.5 |
|             | (320 MeV)       | (310)       | (63) |
| 80% e- Pol  | 85 fb-1         | 425 fb-1    |      |
| ld + e+ Pol | 55 fb-1         | 275 fb-1    |      |

Systematics are of the order of 30 MeV thus comparable to statistical errors for 500 fb-1

## Specific questions (2)

What is the expected precision for the measurement of the Higgs branching ratio to tau-pairs?

 What is the expected precision achievable for the measurement of the triple Higgs coupling? Please provide the answer for center of mass energies of both 500 GeV and 1TeV

#### For each of the 3 questions

- At what amount of integrated luminosity are systematic effects becoming dominant?
- Is there any impact of decreasing (increasing) beamstrahlung by a factor of two relative to the standard parameters, i.e. trading off luminosity vs background?
- Is there any benefit from electron plus positron polarisation (80 and 60%) or from increased electron polarisation in the absence of positron polarisation?
- Are there other accelerator parameters strongly influencing this measurement?