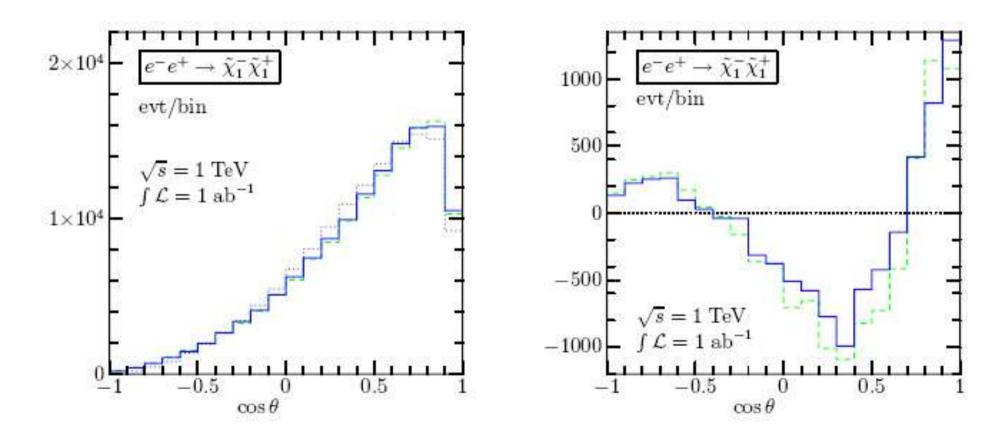
Jenny List DESY Hamburg Valencia, November 6-10 2006

Outline:


- SUSY
- Cosmology
- Parameter Group's Questions:
 - Analyses in this context
 - Status of the answers
- Conclusions

SUSY (non-Cosmology) talks

- Theory:
 - NLO event generation for chargino production at the ILC (T.Robens)
 - How light is the lightest Neutralino? (O.Kittel)
 - Neutralinos in U(1) extended SUSY (J. Kalinowski)
 - Higgs decays into sfermions (K. Kovarik)
 - Neutrino oscillations in split supersymmetry (M. Diaz)
 - Combined LHC/ILC analysis of a SUSY scenario with heavy sfermions (K. Rolbiecki)
- Experiment:

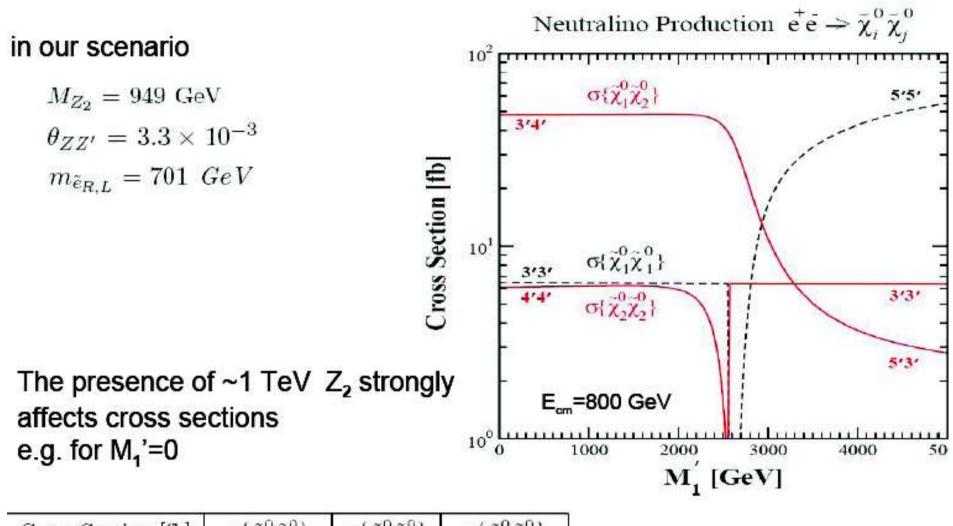
NLO Event Generation for Chargino Production (T.Robens)

simulation results: angular distributions

Born, fixed order, resummation

If more than 1 σ deviation If $\sqrt{n_{\text{max}}} \approx \mathcal{O}(10^2)$; nbins = 20 Jenny List, Valencia, 6-10.11.2006

How light is the lightest Neutralino? (O.Kittel)


- What happens if the GUT relation is dropped?
- For $\tilde{\chi}_1^0 =$ bino, the $Z \tilde{\chi}_1^0 \tilde{\chi}_1^0$ coupling vanishes at tree-level. \Rightarrow No significant contribution to the Z-width!!

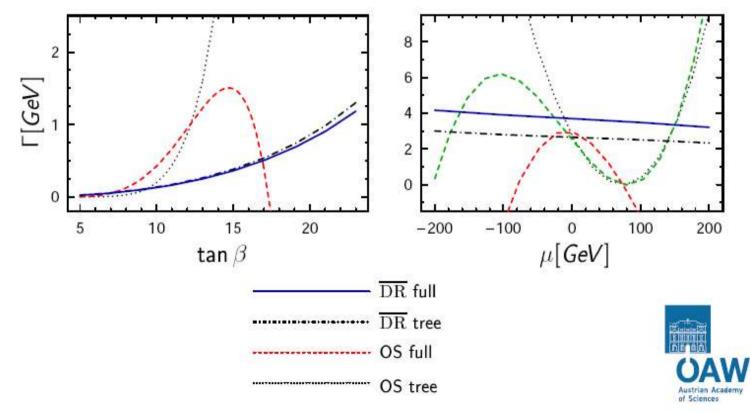
Radiative production of neutralinos $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \gamma$

- LEP: due to small luminosity (order 100 pb $^{-1}$) significance S < 0.1
- ILC:
 - $\mathcal{L} = 500 \text{ fb}^{-1} \rightarrow \text{significance } S = 80 \text{ for SPS } 1a$
 - polarized beams enhance signal and reduce background \rightarrow talk in polarization session
 - $\chi_1^0 \tilde{\chi}_1^0 \gamma$ could be the lightest SUSY state to be observed!

Neutralinos in U(1) extended SUSY (J.Kalinowski)

new states: scalar Higgs, Z' and two neutralinos

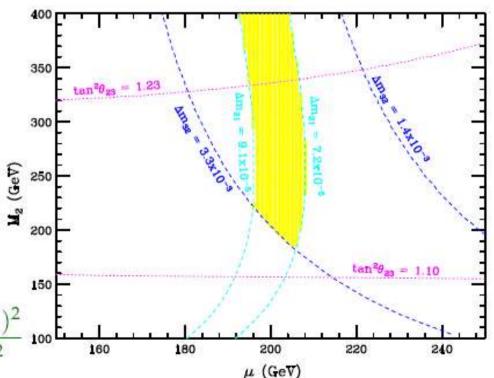
Cross Section [fb]	$\sigma\{\tilde{\chi}_1^0\tilde{\chi}_1^0\}$	$\sigma\{\tilde{\chi}_1^0\tilde{\chi}_2^0\}$	$\sigma\{\tilde{\chi}_2^0\tilde{\chi}_2^0\}$
\mathbf{USSM}	6.5	48.0	6.1
MSSM	1.7×10^{-3}	67.1	$8.5 imes10^{-3}$


although masses of $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ are as in MSSM

Jenny List, Valencia, 6-10.11.2006

Higgs decays into Sfermions (K.Kovarik)

- All Higgs decays into sfermions (or crossed-channels) calculated to one-loop
- Pure on-shell scheme not appropriate A_f, m_f taken running
- SPA analysis for decays possible for on-shell renormalization scheme using SPheno & DRbar20S


SPS1a' parameter shift - $m_{D_3}
ightarrow 150~GeV \quad m_{A^0}
ightarrow 1000~GeV$

 $A^0 \rightarrow \tilde{b}_1 \tilde{b}_2$

Neutrino Oscillations in split SUSY (M.A. Diaz)

- Supersymmetry with Bilinear R-Parity Violation provides a framework for neutrino masses and mixing angles compatible with experiments.
- In Split Supersymmetry with BRpV the Higgs boson forms the only and crucial loop, and trilinear RpV couplings are essentially irrelevant.
- Neutrino parameters can be extracted from collider physics, specially from neutralino decays.

Jenny List, Valencia, 6-10.11.2006

Cosmology (non SUSY) talks

- Theory:
 - micrOMEGAS 2: Calculation of relic density in generic model (A.Pukhov)
- Experiment:
 - Model-independent WIMP searches at the ILC (C. Bartels)

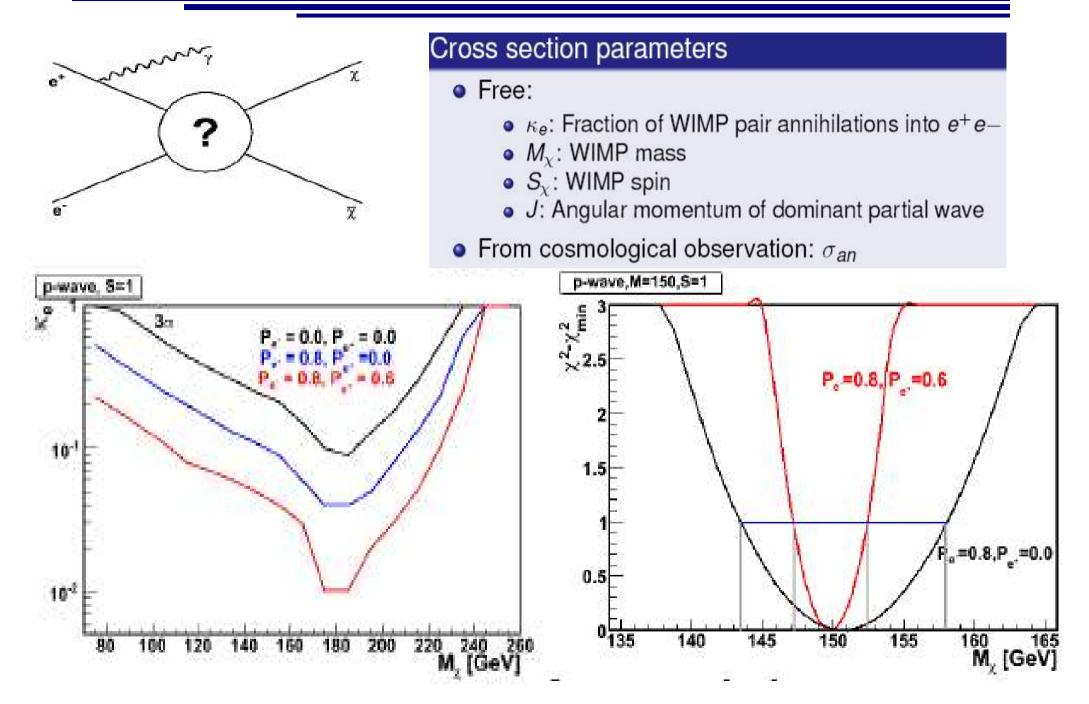
micrOMEGAS 2:

Calculation of Relic Density in Generic Model (A. Pukhov)

The models implemented and in progress.

First of all there are different extensions of MSSM.

• NMSSM - a model with addition neutralino (singlino) which has super-partners in extended Higgs sector. Relic density for this model was studied in $\mu\Omega$, C.Hugonie , hep-ph/0505142


• MSSM with CP-violation $\mu\Omega$, S.Kraml, Phys.Rev.D73:115007,2006

Also there models motivated by Extra-Dimensions physics

- UED private version by C.Balazs
- Warped X-dim in progress, with G.Servant
- Little Higgs A. Belyaev el al, in progress

Generation of new models for CalcHEP is done by the LanHEP package A. Semenov. Nucl.Inst.&Meth. A393 (1997) p. 293. It gives a possibility to fill automatically long list of model vertices.

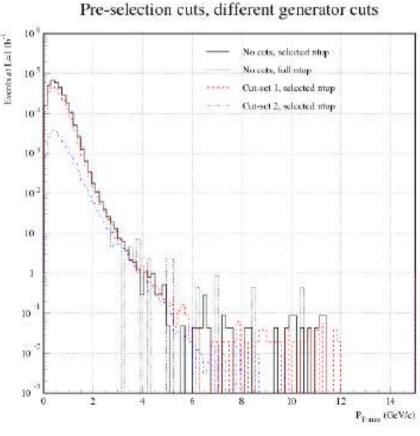
Model-independent WIMP searches at the ILC (C. Bartels)

Parameter Group's Questions

two cases:

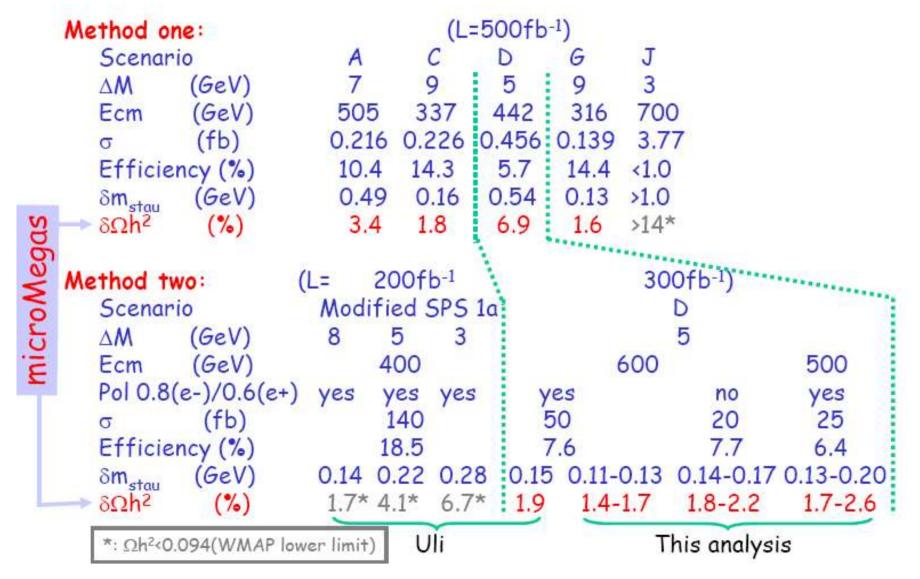
- stau co-annihilation with small stau-LSP mass difference ~ 5 GeV
 - Study of γγ->qq background to SUSY point D' (M. Berggren)
 - Confronting different methods in measuring SUSY DM in co-annihilation scenarios at the ILC (Z.Zhang)
- neutralino pair production
 - Combined LHC/ILC analysis of a SUSY scenario with heavy sfermions (K. Rolbiecki, G. Moortgat-Pick)

Combined LHC/ILC analysis of a SUSY scenario with heavy sfermions (K. Rolbiecki, G. Moortgat-Pick)


- Tricky case of SUSY: multi-TeV sleptons and squarks
 - only few particles kinematically accessible at the ILC with 500 GeV
- Study done even without assuming a specific SUSY breaking scheme!
- Forward-backward asymmetries of the final leptons/quarks: sensitivity to heavy virtual particles
 - get tight constraints even for masses in the multi-TeV range!
- Also rather accurate parameter determination possible with Afb
 - allows to predict masses of heavier charginos/neutralinos
 - important input to outline needed energy scale for the 2nd stage of the ILC !

LHC / ILC(500): neither of these colliders alone can provide sufficient information to solve such a challenging scenario with multi-TeV squarks and sleptons --> LHC / ILC(500) interplay crucial !

Study of $\gamma\gamma$ ->qq background to SUSY point D' (M. Berggren)


Conclusions

- One must be able to reduce the needed number of simulated $\gamma\gamma$ events by two orders of magnitude.
- By iteratively adjusting PYTHIA's generator-level cuts on x_B and W in such a way that the part of the phase-space that passes the preselection cuts of the analysis remains unchanged, this is doable.
- The adjustment needs to be done separately for each classes.
- Even so, sizable computer resources are needed, eve

Confronting different methods in measuring SUSY DM in co-annihilation scenarios at the ILC (Z.Zhang)

Results on the Stau Mass & Relic DM Density

Status of Answers

- before Valencia: collection of existing results, some (apparent) contradictions
- ~2 sessions dedicated to discussions and new results
 => many things got clarified
- here: very crude summary, for details:
- new version of draft will come soon
- still many caveats!

Neutralino Production

- At what amount of integrated luminosity are systematic effects becoming dominant?
 low cross sections -> clearly stat. limited for at least 500 fb⁻¹
- Is there any impact of decreasing (increasing) beamstrahlung by a factor of two relative to the standard parameters, i.e. trading off luminosity vs background? the more lumi the better, additional background not critical
- Is there any benefit from electron plus positron polarisation (80 and 60%) or from increased electron polarisation in the absence of positron polarisation? increased cross sections, positron polarisation crucial for
 - distinguishing higgsino / gaugino nature
 - extracting U(1), SU(2) SUSY couplings
 - accessing SUSY parameters in case of heavy sfermions
- Are there other accelerator parameters strongly influencing this measurement?
 ?

Stau Co-Annihilation

- How much luminosity is needed to reach a precision comparable to the one expected from the measurements with the Planck satellite?
 300 800 fb-1 @ 500 GeV, depending on scenario (D', SPS 1a mod)
- At what amount of integrated luminosity are systematic effects becoming dominant? stat. limited for at least 500 fb⁻¹
- Is there any impact of decreasing (increasing) beamstrahlung by a factor of two relative to the standard parameters, i.e. trading off luminosity vs background? amount of γγ background & forward veto capability critical
 => more beamstrahlung is not desirable
- Is there any benefit from electron plus positron polarisation (80 and 60%) or from increased electron polarisation in the absence of positron polarisation? increased cross sections (~ factor 2), not recoverable by P(e-) only
- Are there other accelerator parameters strongly influencing this measurement?
 - crossing angle > 2 mrad worsens forward tagging capabilities
 - anti-DID essential, but still uninstrumented wedge = loss of efficiency
 - stronger focussing of beam very problematic

Conclusions

- made good use of time, although only 10 talks
 => lot of time for discussions
- more combined sessions with closely related topics cosmology, maybe even Higgs?
- majority of talks from theory side
 => strengthen experimental effort!
 Parameter group's questions triggered some....
- had one analysis using full simulation
 => usefull for improving reconstruction, but also physics output!