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Single bunch instability due to 
electron cloud

• Beam size blowup has been observed 
above a threshold current (~400 mA).

• Synchro-betatron sideband, ~νy+νs, has 
been observed above the threshold.

• The threshold of emittance growth and 
sideband appearance synchronize on/off 
of the solenoid magnets.

• Luminosity degradation occur 
simulteneously.



Measurements of the single bunch 
instability

• Beam size blow-up
• Synchro-beta sideband
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Observation of synchro-beta sideband
• Vertical betatron sidebands found at KEKB which appear 

to be signatures of fast head-tail instability due to 
electron clouds.
– J.W. Flanagan, K. Ohmi, H. Fukuma, S. Hiramatsu, M. Tobiyama 

and E. Perevedentsev, PRL 94, 054801 (2005) 
• Presence of sidebands also associated with loss of 

luminosity during collision.
– J.W. Flanagan, K. Ohmi, H. Fukuma, S. Hiramatsu, H. Ikeda, M. 

Tobiyama, S. Uehara, S. Uno, and E. Perevedentsev, Proc. 
PAC05, p. 680 (2005)

• Further studies have been performed:
– Single beam studies:

• Varying RF voltage 
• Varying chromaticity
• Varying initial beam size below blow-up threshold (emittance)

– In-collision studies:
• Looking at specific luminosity below sideband appearance threshold
• Looking at specific luminosity closer to head and tail of LER bunch



Beam spectrum measurements
• Bunch Oscillation Recorder

– Digitizer synched to RF clock, plus 20-MByte 
memory.

– Can record 4096 turns x 5120 buckets worth of data.
– Calculate Fourier power spectrum of each bunch 

separately.
• Inputs:

– Feedback BPMs
• 6 mm diameter button electrodes
• 2 GHz （4xfrf) detection frequency, 750 MHz bandpass

– Fast PMT
• Used in initial studies, agreed with BPM data



Fourier power spectrum of BPM data

• LER single beam, 4 trains, 100 bunches per train, 4 rf bucket spacing
• Solenoids off:  beam size increased from 60 µm ->283 µm at 400 mA
• Vertical feedback gain lowered

– This brings out the vertical tune without external excitation

V. Tune Sideband Peak



Strong Head-tail instability and 
synchro-beta sideband

• Mode coupling theory
• Eigenvalue problem for synchro-beta modes

• Merging l and l +1 mode, system becomes 
unstable.

M λ=v v
sβλ ω ω≈ +



Ordinary type of wake field
(Vertical wake field given by the numerical method)

• The wake field is calculated by perturbation of head-pert 
of a bunch.  

• Electrons, which are pinched and concentrated due to 
the bunch, are not considered.  Limit of wake field 
approximation.
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Threshold of strong 
head-tail instability

• Modes with l=0 and -1 
merge. 

• Current dependent tune 
shift is “negative”.

• Incoherent tune shift is not 
included.
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Model focusing wake

Mode spectrum using model 
wake and airbag charge distribution.
Incoherent tune shift is considered.

Value of Q chosen to give small νs
dependence on mode separation, but 
other solutions possible (in fact 
more common).

• Wake field may be 
enhanced at the tail part of 
the bunch because of 
increase of the cloud density. 

• Mode coupling pattern is 
changed. Merging between 
l=1 and 2 modes is possible.



Effect of varying synchrotron tune (RF voltage)



Simulation for the sideband
• “Particle In Cell” based strong-strong simulation.
• FFT of beam dipole moment or <yz>.
• At first, relative small cloud (several σxy) did not 

give sideband.
• Increasing cloud size (>10 σxy), a clear upper 

sideband signal is seen (E. Benedetto).
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Electron cloud induced head-tail instability
• E. Benedetto, K. Ohmi, J. Flanagan
• Measurement at KEKB

Tail of train

Head of train

Betatron sideband 

 0
 2e-05
 4e-05
 6e-05
 8e-05

 0.0001
 0.00012
 0.00014
 0.00016
 0.00018

 0.0002

 0.5  0.55  0.6  0.65  0.7
F

F
T

 a
m

p
tune

<1.0e12
1.0e12
1.2e12
1.4e12
1.6e12
1.8e12

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0  1000  2000  3000  4000  5000

si
gy

 (
m

)

turn

0.6e12

0.8e12

1.0e12

1.2e12

1.4e12

Head-tail regime  

Incoherent regime

Simulation (PEHTS) 
HEADTAIL gives 
similar results



Feedback does not suppress the 
sideband

• Bunch by bunch feedback suppress only betatron amplitude.

Sideband signal is Integrated over the train
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Effect of Changing Emittance
• Experiment was done to see if the beam 

blow-up and sideband-appearance 
thresholds change when the initial vertical 
beam size is changed.

• Vertical beam size at low current was 
changed by using a dispersion bump 
(iSize) to change the emittance, then 
beam current ramped up.
– Beam size data taken continuously, beam 

spectrum data taken at 50 mA steps.



Blowup Threshold 
dependence on εy

(iSize Bump)

Pattern:  4/200/4

Beam-size blowup 
threshold does not 
change much, if at 
all.

σy0= 1 µm

σy0= 2.2 µm

σy0= 3.2 µm
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Sideband growth at different σ∗
y0

Integrated beam spectrum over
sideband region



Effect of Changing Emittance
• Conclusion:  Threshold is found not to 

depend on initial vertical beam size.
• Can we understood this behavior?
• Threshold

• ωe of numerator is cancelled by ωe in Q. 
ωeσz/c=2.5 for KEKB.

• K is an enhancement factor for cloud size.
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Qnl<ωeσz/c in the Damping ring
• Q=Qnl=3-10, 

• ωeσz/c contributes to Landau damping, while 
contributes to electron pinching and accumulation.

• Threshold given by the simulation shows KQ~15 for 
KEKB, while 60 for ILC damping ring. The enhancement 
is due to electron pinching and accumulation. 
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Threshold by analytic theory and simulation
• Threshold given by simulation is compared by the 

analytical estimates for KQ=15.

• The systematic difference (4x) between simulation and 
linear theory may be due to the cloud pinching.

• Incoherent effect is strong in BRU. Coherent threshold 
has not obtained yet. 

• Simulations are accurate because the pinching is taken 
into account.

• Note that ρth(ana.) has dependence on 1/βy but ωe has 
1/sqrt(βy). 
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Variety of measurements

• Cloud density is controlled by changing 
spacing or bunch current of preceding 
bunch.

• Variables depending on bunch current is 
measured for various cloud densities.

1. Luminosity and sideband measurement
2. Current dependent tune shift 

measurement.



Luminosity-sideband measurement
Decaying Cloud, Constant Bunch Current

Decaying
Test Bunch

Fill Pattern:

2 2 333 44Buckets:

Regular physics pattern bunches
Average spacing:  3.5 buckets

Bunch current:  Constant 1.2 mA
(using continuous injection)

Constant
Observer Bunch

PAC05



Decaying Cloud, Constant Bunch Current
Sideband Peak Heights
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Decaying Cloud, Constant Bunch Current
Specific Luminosity

• Specific luminosity of 
observer bunch is 
lower than that of 
regular bunches 
above 0.4 mA, but is 
nearly the same 
below 0.4 mA.
– Consistent with 

sideband behavior, 
and explanation that 
loss of specific 
luminosity is due to 
electron cloud 
instability.
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Constant Cloud, Decaying Bunch Current
Study

Decaying
Test Bunch

Fill Pattern:

2 2 333 44Buckets:

Regular physics pattern bunches
Average spacing:  3.5 buckets

Bunch current:  1.2 mA constant
(using continuous injection) PAC05



Constant Cloud, Decaying Bunch Current
Sideband Peak Heights

Sidebands disappear below test bunch current of ~0.75 mA
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Constant Cloud, Decaying Bunch Current
Specific Luminosity

• Specific luminosity of 
observer bunch is lower 
than that of regular 
bunches above 0.75 mA, 
but is nearly the same 
below 0.75 mA.

• Again, consistent with 
sideband behavior, and 
explanation that loss of 
specific luminosity is due 
to electron cloud instability.

• Also consistent with streak 
camera observations of 
vertical bunch size:  bunch 
larger above ~0.8 mA.
– H. Ikeda et al., PAC05 

poster RPAT052.
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Constant Cloud, Decaying Bunch Current
Study II

Decaying
Test Bunch

Fill Pattern:

2 2 333 44Buckets:

Regular physics pattern bunches
Average spacing:  3.5 buckets

Bunch current:  1.2 mA constant
(using continuous injection)



Sidebands and Spec. Lum.

• Sidebands disappear at around a 
bunch current of 0.8 mA.

• Specific luminosity of 2-bucket 
and 4-bucket spacing bunches 
do not merge at that point, 
however.
– Possible that sidebands 

continue, but below noise 
level.

– OR, possible indication of the 
presence of an incoherent 
component below the 
sideband threshold.

Sideband Peak Height

Specific Luminosity

4-bucket spacing

2-bucket spacing

Sideband
Threshold



Measurement of current dependent 
tune shift (Ieiri)

• The wake force is basically defocusing at 
z<c/ωe.

• Current dependent tune shift should be 
negative for low bunch current ωeσz/c<1 
below the mode coupling threshold. 

Variable: controll cloud density

Measure curent dependent 
tune shift

Bunch train 
head



• Current dependent tune shift should have two 
component for ωeσz/c<1 and ωeσz/c>1 below the 
mode coupling threshold (low cloud density).

• Near the threshold (high cloud density), tune shift 
behavior is disturbed by coupling with another 
mode.
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Measurement 1 : Current-Dependent Tune-Shift (CDTS)

Vertical
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• The CDTS is not linear.
• Approximated by two lines.

T. Ieiri KEKBreview 2006

Vp_799 & 802: high cloud 
density

Vp_805 & 808: low cloud density

Vp_856 & 900: No cloud

I>0.6 mA, ωeσz/c>1
Comment by KO



Measurement 1 : Current-Dependent Tune-Shift (CDTS)

Horizontal Vertical
- Two values correspond to the CDTS around 0.4 mA and 0.8 mA.

CDTS of single bunch
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• The vertical CDTS abruptly changed around D=10.
• Positive CDTS at D<10.

Disturbed by another 
coupled mode, perhaps 
Comment by KO.

Defocusing nature 
of the wake at low 
cloud density

T. Ieiri KEKBreview 2006



Measurement 2 : Current-Dependent Tune-Shift (CDTS)

Vertical
CDTS of Single Bunch
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• Horizontally, completely damped by solenoids.
• Vertically reduced, but the structure is preserved.

T. Ieiri KEKBreview 2006

With solenoid

Electrons remain in solenoid, 
if the accuracy is sufficient.

Comment by KO



Coupled bunch instability
• Fast amplitude growth which causes beam loss has been 

observed.
• The mode spectrum of the instability depends on 

excitation of solenoid magnets.

Solenoid  off                    on   (measurement)



• Drift without solenoid, δ2max=1.5

0 200 400 600 800 1000 1200
0

1

2

0 200 400 600 800 1000 1200
0

50

0 200 400 600 800 1000 1200
0

5

0 200 400 600 800 1000 1200
0

100

200

mode

am
pl

itu
de

 (
ar

b.
 u

ni
t)

am
pl

itu
de

 (
ar

b.
 u

ni
t)

am
pl

itu
de

 (
ar

b.
 u

ni
t)

am
pl

itu
de

 (
ar

b.
 u

ni
t)

(a) 

(b) 

(c) 

(d) 

X, illum

Y, illum

X, unif

Y, unif
0 200 400 600 800 1000 1200

0

500

1000

1500

2000

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

mode

am
pl

itu
de

am
pl

itu
de

(a) 

(b) 

Solenoid OFF

Solenoid ON



Summary

• Various beam measurements have been 
done for electron cloud instability in KEKB.

• Most of measurements can be explained 
by theory and simulation quantitatively. 
They are precision measurements.

• Measurements at lower emittance, high 
ωeσz/c, will be carried out.



ECLOUD07

• Held in Daegu in Korea, April 9-12 or 13 
2007.





Measurement 1 : Bucket-Dependent Tune-Shift (BDTS)

Along Train After Train
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Measurement 2 : Bucket-Dependent Tune-Shift (BDTS)
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