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Single bunch instability due to
electron cloud

Beam size blowup has been observed
above a threshold current (~400 mA).

Synchro-betatron sideband, ~v, +v, has
been observed above the threshold

The threshold of emittance growth and
sideband appearance synchronize on/off
of the solenoid magnets.

Luminosity degradation occur
simulteneously.



 Beam size blow-up

Measurements of the single bunch
instabllity

e Synchro-beta sideband
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Observation of synchro-beta sideband

* Vertical betatron sidebands found at KEKB which appear
to be signatures of fast head-tail instability due to
electron clouds.

— J.W. Flanagan, K. Ohmi, H. Fukuma, S. Hiramatsu, M. Tobiyama
and E. Perevedentsev, PRL 94, 054801 (2005)

 Presence of sidebands also associated with loss of
luminosity during collision.

— J.W. Flanagan, K. Ohmi, H. Fukuma, S. Hiramatsu, H. Ikeda, M.

Tobiyama, S. Uehara, S. Uno, and E. Perevedentsev, Proc.
PACOS5, p. 680 (2005)

* Further studies have been performed:

— Single beam studies:
» Varying RF voltage
« Varying chromaticity
» Varying initial beam size below blow-up threshold (emittance)
— In-collision studies:
» Looking at specific luminosity below sideband appearance threshold
» Looking at specific luminosity closer to head and tail of LER bunch



Beam spectrum measurements

e Bunch Oscillation Recorder

— Digitizer synched to RF clock, plus 20-MByte
memory.

— Can record 4096 turns x 5120 buckets worth of data.
— Calculate Fourier power spectrum of each bunch
separately.
e |nputs:

— Feedback BPMs

6 mm diameter button electrodes
« 2 GHz ( 4xf,) detection frequency, 750 MHz bandpass

— Fast PMT
» Used in initial studies, agreed with BPM data



Fourier power spectrum of BPM data
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 LER single beam, 4 trains, 100 bunches per train, 4 rf bucket spacing
« Solenoids off: beam size increased from 60 um ->283 um at 400 mA

» Vertical feedback gain lowered
— This brings out the vertical tune without external excitation



Strong Head-tall instability and
synchro-beta sideband

 Mode coupling theory
e Eigenvalue problem for synchro-beta modes

Mv, =4V,
A, = @y + L,

e Merging ¢and £ +1 mode, system becomes
unstable.



Ordinary type of wake field

(Vertical wake field aiven by the numerical method)
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 The wake field is calculated by perturbation of head-pert
of a bunch.

 Electrons, which are pinched and concentrated due to
the bunch, are not considered. Limit of wake field
approximation.

K. Ohmi, F. Zimmermann, E. Perevedentsev, PRE65,016502 (2001)



Threshold of strong
head-tall instabllity

Modes with ¢=0 and -1
merge.

Current dependent tune
shift is “negative”.
Incoherent tune shift Is not
Included.



IR <Model focusing wake

z|
\  Wake field may be

0 0.5 1 1.5 5 enhanced at the tail part of
—2 /G2 the bunch because of

Increase of the cloud density.
FIG. 5: Model focusing wake. The horizontal axis is longitu-

dinal position normalized to the bunch length. e Mode Coup“ng pattern IS

changed. Merging between
(=1 and 2 modes is possible.

0.1

D.DE:—‘:.‘T'—H. -

]
3 0 — € Mode spectrum using model
R wake and airbag charge distribution.
I B "] Incoherent tune shift is considered.
0 2 1 6 g 10 Vaueof Q chosen to give small Vg
cR/Q [nr2] x10° dependence on mode separation, but

other solutions possible (in fact
FIG. 6: Example mode spectrum for model focusing wake at more Common).
vs = 0.022 (dashed lines) and . = 0.024 (solid lines).



Effect of varying synchrotron tune (RF voltage)
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FIG. 3: Effect of changing synchrotron tune on the separa-
tion between sideband peak and betatron peak. In a), the
sideband-betatron peak separation is plotted along the bunch
train for v = 0.0246 (solid lines) and v = 0.0234 (dashed
lines). In b), the difference between the two curves is plotted.
Statistical 1-sigma error bars are shown.



Simulation for the sideband

“Particle In Cell” based strong-strong simulation.
FFT of beam dipole moment or <yz>.

At first, relative small cloud (several 6,,) did not
give sideband.

Increasing cloud size (>10 o,,), a clear upper
sideband signal is seen (E. Benedetto)
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Electron cloud induced head-tail instability

_ Simulation (PEHTS)
 E. Benedetto, K. Ohmi, J. Flanagan HEADTAIL gives

« Measurement at KEKB 00002 similar results
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Feedback does not suppress the

sideband

 Bunch by bunch feedback suppress only betatron amplitude.

1o B @) Feedback Gain: High

L

1 1 1
L] .54 1]

L L L L L L
1] s [m (1=~ ] 1 s n&= i
Fractional Tune T

10 ..
T b Feedback Goin:  Lowe
=
il 4
1
--I
M L] .54 1] 1] s [m (=] 1 s n&= N3
Fraecticnal Tune
I...- -
|.-. i
i of o« Feecdback O
[u] =
= |

1] s (N
Fractional Tune

FIG, 2. Avermged spectm of all bunches
(e high, (b los, and (o) set o zero, The
visible at 0,588, and the sideband peak c

wilh the feedback gain
crtjcal\hetatron peakis
n He scen around O0G4

Sideband signal is Integrated over the train

FFT amp

9e-05 I I I
8e-05 |- .
7e-05 FB-30 turn .
6e_05 . ------ e e _
5e-05 |- FB-50 .
4e_05 I N T T RN —]
3e-05 |- FB-100 .
2e-05 |- .
le-05 J H‘L FB-OFF k .
0 M i A L
0.56 0.58 0.6 0.62 0.64
\ tune [

Betatron sideband
Simulation (PEHTS)



Effect of Changing Emittance

e Experiment was done to see If the beam
blow-up and sideband-appearance
thresholds change when the initial vertical
beam size Is changed.

* Vertical beam size at low current was
changed by using a dispersion bump
(1Size) to change the emittance, then
beam current ramped up.

— Beam size data taken continuously, beam
spectrum data taken at 50 mA steps.
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Mormalized. Inteprated Sideband Peak Power {(arb)

Sideband growth at different 6%,
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Effect of Changing Emittance

e Conclusion: Threshold is found not to
depend on initial vertical beam size.

e Can we understood this behavior?

e Threshold
Q=min(Q,, ®,0,/C)
p _ 2y m0,/C —
e,th_ . preC
V3KQrL we_J 0,(0,+0,)

* @, of numerator is cancelled by o, in Q.
®.0,/c=2.5 for KEKB.

e Kis an enhancement factor for cloud size.

K. Ohmi, Showmass 2005



Q. <w.c,/c In the Damping ring

e Q=0Q,,=3-10,
p _2w,e0,/C
eth \/éKQrOﬂL

* ®.0,/Cc contributes to Landau damping, while
contributes to electron pinching and accumulation.

e Threshold given by the simulation shows KQ~15 for
KEKB, while 60 for ILC damping ring. The enhancement
IS due to electron pinching and accumulation.



Threshold by analytic theory and simulation

« Threshold given by simulation is compared by the
analytical estimates for KQ=15.

TDR(b=15

TDR (b=30) ) oTW OCS PPA BRU MCH DAS KEKB

peth (m-3) 5.38E+11 1.29E+12 1.70E+12  6.19E+11 1.31E+12 2.28E+12  1.34E+12 4.66E+11  5.30E+11

peth(sim) 1.20E+11 2.40E+11 4.00E+11 1.40E+11 3.00E+11 1.20E+11 4.00E+11
pana/psim 4.49 5.37 4.24 4.42 4.46 3.89 1.33
 The systematic difference (4x) between simulation and

linear theory may be due to the cloud pinching.

* Incoherent effect is strong in BRU. Coherent threshold
has not obtained yet.

e Simulations are accurate because the pinching is taken
Into account.

* Note that py(ana.) has dependence on 1/B, but . has
1/sqrt(p,)-

K. Ohmi, CERN-ILCDRO5



Variety of measurements

Cloud density is controlled by changing
spacing or bunch current of preceding
bunch.

Variables depending on bunch current is
measured for various cloud densities.

. Luminosity and sideband measurement

. Current dependent tune shift
measurement.



Luminosity-sideband measurement
Decaying Cloud, Constant Bunch Current
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(using continuous injection) PACO05



Decaying Cloud, Constant Bunch Current
Sideband Peak Heights
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Decaying Cloud, Constant Bunch Current
Specific Luminosity

o Specific luminosity of
observer bunch is

0.0025
lower than that of
regular bunches 8 o002 &
above 0.4 mA, butis >
-H
nearly the same 2 0.0015 |
g
below 0.4 mA. =
: : 3 0.001 r
— Consistent with f‘) '
sideband behavior, -
and explanation that -g 0000571 2-Bucket Observer Bunch —#—
loss of specific £
luminosity is due to o LA7Bucket Bunches lavg), % |
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Constant Cloud, Decaying Bunch Current

Study
Fill Pattern: Decaying
Test Bunch
)
Buckets:4 4 3 ) 4 3 4ZNZ> 3
\ )

Regular physics pattern bunches
Average spacing: 3.5 buckets
Bunch current: 1.2 mA constant
(using continuous injection) PACO5



Constant Cloud, Decaying Bunch Current
Sideband Peak Heights

Sideband Height (Non-colliding bunch)
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Constant Cloud, Decaying Bunch Current
Specific Luminosity
» Specific luminosity of

observer bunch is lower
than that of regular 0.007

bunches above 0.75 mA, 3 2-Bucket Bunch TR
but is nearly the same g 0-0067 4-Bucket Bunch 4 ]
below 0.75 mA. > 0.005 |
« Again, consistent with -
sideband behavior, and 9 0.004 ¢
explanation that loss of % 5 003 |
specific luminosity is due =
to electron cloud instability.ﬁ 0. 002 k-
e Also consistent with streak ¢
camera observations of & °-°% [
vertical bunch size: bunch 0 . . . . .
larger above ~0.8 mA. 0 0.2 0.4 0.6 0.8 1 1.2
— H. Ikeda et al., PACO05 Bunch Current (mA)

poster RPATO052.
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Constant Cloud, Decaying Bunch Current

Study I
Fill Pattern: Decaying
Test Bunch
Buckets:4 4 3 ) 4 3 ) 2 a 2 " 3
\ )

Regular physics pattern bunches
Average spacing: 3.5 buckets
Bunch current: 1.2 mA constant
(using continuous injection)



Sidebands and Spec. Lum.

Sidebands disappear at around a
bunch current of 0.8 mA.

Specific luminosity of 2-bucket
and 4-bucket spacing bunches
do not merge at that point,
however.

— Possible that sidebands
continue, but below noise
level.

— OR, possible indication of the
presence of an incoherent
component below the
sideband threshold.
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Measurement of current dependent
tune shift (leir)

 The wake force Is basically defocusing at
Z<Cl,.

e Current dependent tune shift should be
negative for low bunch current ®,c,/c<1
below the mode coupling threshold.

Measure curent dependent

| | | tune shift
Bunch train

head Variable: controll cloud density




e Current dependent tune shift should have two
component for 0 ,6,/c<1 and w.c,/c>1 below the
mode coupling threshold (low cloud density).

\/ A1,
W, =
o,(o,+0,)

* Near the threshold (high cloud density), tune shift
behavior Is disturbed by coupling with another
mode.




Measurement 1 : Current-Dependent Tune-Shift (CDTS)
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e The CDTSIisnot linear.

« Approximated by two lines.

T. leiri KEKBreview 2006

L/tune_400
w 0012 T
= r
4(7-5 0.01 F . L SR
L 0.008 r’
> [
B 0004 b m A A
= - I
© 0002 | ° ° o
> 0 -I 1 1 -

0.2 0.4 0.6 0.8 1 1.2
Bunch Current (mA)

Vp_799 & 802: high cloud
density

Vp_805 & 808: low cloud density
Vp_856 & 900: No cloud

1>0.6 mA, ©.0,/c>1
Comment by KO



Measurement 1 : Current-Dependent Tune-Shift (CDTS)

- Two values correspond to the CDTS around 0.4 mA and 0.8 mA.

Horizontal Vertical
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» The vertical CDTS abruptly changed around D=10.
* Positive CDTS at D<10.

Disturbed by another Defocusing nature
T. leiri KEKBreview 2006 coupled mode, perhaps of the wake at low
Comment by KO. cloud density



Measurement 2 : Current-Dependent Tune-Shift (CDTS)

With solenoid CDTS of Single Bunch
- Vertical
Horizontal B shifttmA
e ARAREARRRS LS ) Shift_1400
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* Horizontally, completely damped by solenoids.
* Vertically reduced, but the structure is preserved.

Electrons remain in solenoid,
T. leiri KEKBreview 2006 if the accuracy is sufficient.

Comment by KO



Coupled bunch instability

* Fast amplitude growth which causes beam loss has been
observed.

 The mode spectrum of the instability depends on
excitation of solenoid magnets.
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Summary

e Various beam measurements have been
done for electron cloud instability in KEKB.

 Most of measurements can be explained
by theory and simulation quantitatively.
They are precision measurements.

 Measurements at lower emittance, high
®.0,/c, will be carried out.



ECLOUDOY

 Held in Daegu in Korea, April 9-12 or 13
2007.






Measurement 1 : Bucket-Dependent Tune-Shift (BDTS)

Without Solenoids
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Measurement 2 : Bucket-Dependent Tune-Shift (BDTS)
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