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HIFS-VNL has unique tools to study ECE

• WARP/POSINST code goes beyond previous state-of-the-art (Celata)
– Parallel 3-D PlC-adaptive-mesh-refinement code with accelerator lattice

follows beam self-consistently with gas/electrons generation and evolution

• HCX experiment addresses ECE fundamentals relevant to HEP (as
well as WDM and HIF)
– trapping potential ~2kV (~20% of ILC bunch potential) with highly

instrumented section dedicated to e-cloud studies

• Combination of models and experiment unique in the world
– unmatched benchmarking capability provides credibility

-‘Benchmarking’ can include: a. Code debug
- b. validation against analytic theory
- c. Comparison against codes
- d. Verification against experiments

– enabled us to attract work on LHC, FNAL-Booster, and ILC (2007)

Who we are – The Heavy Ion (Inertial) Fusion Science Virtual National
Laboratory (HIFS-VNL) has participants from LLNL, LBNL, and PPPL.
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Short experiment => need to deliberately amplify electron effects:
let beam hit end-plate to generate copious electrons which propagate upstream.
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Diagnostics in two magnetic quadrupole bores, & what
they measure.

MA4MA3

8 “paired” Long flush collectors (FLL):
measures capacitive signal + collected
or emitted electrons from halo scraping
in each quadrant.

3 capacitive probes (BPM); beam capacitive pickup ((nb- ne)/ nb).
2 Short flush collector (FLS); similar to FLL, electrons from wall.
2 Gridded e- collector (GEC); expelled e- after passage of beam
2 Gridded ion collector (GIC): ionized gas expelled from beam

BPM (3)

BPM

FLS(2)

FLS

GIC (2)

GIC

Not in service

FLS

GECGEC
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1. Ionization of gas by beam

2. Electron emission from wall

3. Axial current of electrons from end

B
-50 V +50 V

Expelled ions
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Point source of electrons to simulate synchrotron
radiation photoelectrons

Electron current vs. cathode-grid potential at 
various cathode temperatures
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Electron gun operates over range

~10 eV to 2000 eV (cathode & grid indep.)

<1 mA to 1000 mA

Electron gun enables
quantitatively controlled
injection of electrons
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Clearing electrode removes all electrons from a drift region

 • Clearing electrode ring (C) – blocks
electrons from (B) when biased
more negatively than -3 kV

• Clearing electrode ring (B) [with
Vc= 0] blocks electrons from (A)
when biased more negatively than -
3 kV

Vs=0, Vc_a,b=+9 kV
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Suppressor bias = 0 V, electrons can leak back into quads along  beam.
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Clearing electrode fields, above 2 kV bias, dominate
over beam space-charge field

Vc = 0 kV
φb = +2 kV

Vc = +2 kV
φb = +2 kV

Vc = +10 kV
φb = +2 kV

Beam space-charge potential φb = +2 kV

For ILC,  probably sufficient for clearing field to dominate over
beam space charge averaged over a few bunches (easier), or
remove electrons in period between bunches (harder).
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Trapping depth of electrons depends upon their source, in
a quadrupole magnet (without multipactor)

Electrons ejected from
end wall

Electrons from
ionization of gas

Electrons desorbed
from beam pipe in quad
upon ion impact

E-cloud in a quadrupole magnet
[Electron mover also speeds simulation in wiggler fields] 

beam pipe

Deeply trapped
electrons

Weakly trapped
electrons
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Gridded Electron Collectors (GEC) current measures
electron depth of trapping
GEC collects e- along B-field
lines, detrapped at end of pulse
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Weakly trapped electrons cleared with ~300 V bias,
whereas deeply trapped require >1000 V

GEC4.5-2: integrated around 5.25us (positively biased), Data 6/23/05
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• Weakly trapped electrons originate on or near a wall (beam tube) –
turning points near wall.

• Deeply trapped electrons originate from beam impact ionization of gas,
or scattering of weakly trapped electrons – turning points within beam.
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1

WARP-POSINST code suite is unique in four ways
  merge of WARP & POSINST

Key: operational; partially implemented  (4/28/06)

+                       new e-/gas modules

2

+ Adaptive Mesh Refinement

Z

R

concentrates
resolution
only where it
is needed

3
Speed-up 
   x10-104

beam

quad

e- motion
in a quad

+ New e- mover
Allows large time step
greater than cyclotron
period with smooth
transition from
magnetized to non-
magnetized regions

4 Speed-up x10-100
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1. Good test of secondary module
- no secondary electrons:

2. run time ~3 days,
- without new electron mover and MR, run
time would be ~1-2 months!

1. Good test of secondary module
- no secondary electrons:

2. run time ~3 days,
- without new electron mover and MR, run
time would be ~1-2 months!

High-density electron oscillation provides benchmark of simulations

WARP-3D
T = 4.65µs
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• HCX experiment and WARP
simulations agree quantitatively
on oscillation
– Frequency ~ 6 MHz
– Wavelength ~ 5 cm
– Amplitude – see below

Array of BPMs in Quad 4 verified simulation results
Beam Position Monitor (BPM): electrode
capacitively coupled to beam

Axial Position (cm)               0                   -12                  -23.5

Pulsed quad B-dot measurements, 7/9/02
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FFT 1.9 to 2.9 µs, averaged 1 to 31 MHz, Data 26 January, 2006, Shot 6
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• Diagnose e-cloud density, electron sources, emission

coefficients, mitigate, measure effects on beam.

• Diagnose gas cloud desorption coefficients, velocity.

• Model combined gas and electron clouds and validate with

experiment.

• LLNL & LBNL engineering – variety of accelerator skills

including UHV, cooling, rf, working in close collaboration with

physicists.

Summary of capabilities
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• Clearing electrode rings are effective at removing ‘all’ electrons

from drift region

- HCX experiment available for testing diagnostics and

selected clearing electrode designs, between or in quads.

• Simulations benchmarked against experiment – accurately

reproduce many details of experiment

- Simulations can explore a variety of 3-D clearing electrodes

or coatings to mitigate electrons

- Then, experiment can test selected solutions for

effectiveness

Conclusions
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Backup slides
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Retarding field analyzer (RFA) measures
energy distribution of expelled ions

• RFA an extension of ANL design (Rosenberg and Harkay)
• Can measure either ion (shown) or electron distributions
• Potential of beam edge ~1000 V, beam axis ~ 2000 V

Ref: Michel Kireeff Covo, Physical Review Special Topics – Accelerators and Beams 9, 063201 (2006).
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/RFA
• Retarding field analyzer (RFA)

measures potential on axis = ion-
repeller potential

• + beam/e- distr. => f=Ne/Nbeam

– A first –
time-dependent measurement of absolute electron cloud density*

Clearing electrode measures e- current

+ e- velocity drift => f=Ne/Nbeam

Absolute electron fraction can be inferred
from RFA and clearing electrodes

~ 79%~ 27%(~ 7%)RFA
~ 89%~ 25%~ 7%Clear. Electrode A

B, C, S offB, C off
S on

B, C, S onBeam neutralization

*Michel Kireeff Covo, et al, Phys. Rev. Lett. 97, 054801 (2006).
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Simulations with beam reconstructed from slit scans –
improved agreement

• Effects of electrons on beam
– beam loading in simulation now
uses reconstructed data from slit-
plate measurements

leads to improved agreement
between simulation and
experiment Semi-gaussian load =>

New load from
reconstructed data =>

X
'

X X

X
'

X
'

Reconstructed X-Y
distribution from slit-plate
measurements

Low e- High e-

No e-

No e-

High e-

High e-
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Beam potential when electrons are detrapped can indicate
their origin
• Requires electron bounce

time (~10 ns) short relative to
beam tail decay (~1 µs)

• High detrapping energy of
electrons ⇒ gas ionization (or
scattered e-)

• Low detrapping energy ⇒ e-
from walls (or near walls).
Why >400 eV width?

• Electrons with Et ≥ 1500 eV
decrease with volume of e-

• Beam potential measured with
RPA, from energy of expelled
ions (from beam impact on gas)
[Michel Kireeff Covo]

GEC4.5-2 (+bias) vs Trapping potential, Data 8 Nov. 2004.
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Solenoids Electron collectors/ 
clearing rings

Electron 
suppressor rings

Coax cable to 
1st suppressor ring

Injector

Molvik – 12/21/05

8 cm

65 cm
Insulator

Electron accumulation and effects on beam transport in
solenoidal field – initial experiments

                                 Short electrodes in
                      solenoids expel or attract
               electrons, long electrodes
       collect or emit electrons along
solenoidal field lines between magnets.


