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HIFS-VNL has unique tools to study ECE

Who we are — The Heavy lon (Inertial) Fusion Science Virtual National
Laboratory (HIFS-VNL) has participants from LLNL, LBNL, and PPPL.

- WARP/POSINST code goes beyond previous state-of-the-art (Celata)

— Parallel 3-D PIC-adaptive-mesh-refinement code with accelerator lattice
follows beam self-consistently with gas/electrons generation and evolution

- HCX experiment addresses ECE fundamentals relevant to HEP (as
well as WDM and HIF)

— trapping potential ~2kV (~20% of ILC bunch potential) with highly
instrumented section dedicated to e-cloud studies

- Combination of models and experiment unique in the world

— unmatched benchmarking capability provides credibility
-‘Benchmarking’ can include: a. Code debug
- b. validation against analytic theory
- c. Comparison against codes
d. Verification against experiments
— enabled us to attract work on LHC, FNAL-Booster, and ILC (2007)
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HCX is available for gas/electron effects studies (at LBNL)

Location of Current
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Short experiment => need to deliberately amplify electron effects:
let beam hit end-plate to generate copious electrons which propagate upstream.
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Diagnostics in two magnetic quadrupole bores, & what

they measure.

MA3____ I

i e

8 “paired” Long flush collectors (FLL):
measures capacitive signal + collected
or emitted electrons from halo scraping
in each quadrant.

Not in service

3 capacitive probes (BPM); beam capacitive pickup ((n,- n,)/ n).
2 Short flush collector (FLS); similar to FLL, electrons from wall.
2 Gridded e collector (GEC); expelled e after passage of beam
2 Gridded ion collector (GIC): ionized gas expelled from beam
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Diagnostics developed to measure all sources and some
sinks of electrons
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Point source of electrons to simulate synchrotron
radiation photoelectrons

Electron gun enables Electron gun operates over range
quantitatively controlled

~10 eV to 2000 eV (cathode & grid indep.)
injection of electrons

<1 mA to 1000 mA

Electron current vs. cathode-grid potential at
various cathode temperatures
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Clearing electrode removes all electrons from a drift region

BA s s e

Suppressor bias = 0 V, electrons can leak back into quads along beam.

Vs=0, Vc_a,b=+9 kV

i IR

10

< i
. . £ |
- Clearing electrode ring (C) — blocks 5 °h
electrons from (B) when biased gy s
more negatively than -3 kV £ zo/ o e
6-30'---:---:---:---:---
0 2 4 6 8 10
Bias on clearing electrode-c (kV)
10 & Vs=0, Vc_a=+9 kV, Vc_c =0.0

- Clearing electrode ring (B) [with
V.= 0] blocks electrons from (A)
when biased more negatively than -
3 kV

Clearing electrodes (mA)

0 2 4 6 8 10
Bias on clearing electrode-b (kV)
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Clearing electrode fields, above 2 kV bias, dominate
over beam space-charge field

Beam space-charge potential ¢, = +2 kV
Ve=+2KkV V,=+10kV

V,=0KkV
0, = +2 KV ¢, = +2 KV

o, = +2 kV

ing Electrode 3 5: C s C

ing Electrode 3

Y(m

. - - h - - - - .
1.70 1.60 1.6 1.70 1.60 1.65 1.70

Z (m) Z (m) Z (m)

For ILC, probably sufficient for clearing field to dominate over
beam space charge averaged over a few bunches (easier), or
remove electrons in period between bunches (harder).
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Trapping depth of electrons depends upon their source, in
a quadrupole magnet (without multipactor)

E-cloud in a quadrupole magnet

[Electron mover also speeds simulation in wiggler fields]
Electrons ejected from Electrons from

. end wall -

Electrons desorbed
ionization of gas

from beam pipe in quad
upon ion impact
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electrons electrons
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Gridded Electron Collectors (GEC) current measures
electron depth of trapping

GEC collects e- along B-field HCX current flattops for ~4 s
lines, detrapped at end of pulse (like super-bunch)
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Weakly trapped electrons cleared with ~300 V bias,

whereas deeply trapped require >1000 V

- Weakly trapped electrons originate on or near a wall (beam tube) —

turning points near wall.

- Deeply trapped electrons originate from beam impact ionization of gas,
or scattering of weakly trapped electrons — turning points within beam.

GEC4.5-2: integrated around 5.25us (positively biased), Data 6/23/05
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WARP-POSINST code suite is unique in four ways

merge of WARP & POSINST

ramework
WARP frame
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+ New e- mover

Allows large time step
greater than cyclotron
period with smooth
transition from
magnetized to non-
magnetized regions

(4) Speed-up x10-100

quad

e motion
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High-density electron oscillation provides benchmark of simulations

)

oV 0V/+9kV ov ,
N Potential contours

o

WARP-3D
T =4.65us

1. Good test of secondary module
- no secondary electrons:
| | — Simulation
'g : — Experiment
= -20.
—_ — Simulation 1
‘é Experiment . . 4%. 2. time(us) 6.
= ~6 MHz signal in _
20. in simulation 2. run time ~3 days,
. - without new electron mover and MR, run
4, tmews) . AND experiment time would be ~1-2 months!
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Array of BPMs in Quad 4 verified simulation results

Beam Position Monitor (BPM): electrode - HCX experiment and WARP
capacitively coupled to beam simulations agree quantitatively
4 Pulsed quad B-dot measurements, 7/9/02 on OSCiIIation
—— — Frequency ~ 6 MHz

w
1
— T T TT

— Wavelength ~5 cm
— Amplitude — see below

FFT 1.9 to 2.9 ps, averaged 1 to 31 MHz, Data 26 January, 2006, Shot 6
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Summary of capabilities

- Diagnose e-cloud density, electron sources, emission
coefficients, mitigate, measure effects on beam.

- Diagnose gas cloud desorption coefficients, velocity.

- Model combined gas and electron clouds and validate with
experiment.

- LLNL & LBNL engineering — variety of accelerator skills
including UHV, cooling, rf, working in close collaboration with

physicists.
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Conclusions

- Clearing electrode rings are effective at removing ‘all’ electrons
from drift region
- HCX experiment available for testing diagnostics and
selected clearing electrode designs, between or in quads.
- Simulations benchmarked against experiment — accurately
reproduce many details of experiment
- Simulations can explore a variety of 3-D clearing electrodes
or coatings to mitigate electrons
- Then, experiment can test selected solutions for
effectiveness
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Backup slides
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Retarding field analyzer (RFA) measures
energy distribution of expelled ions

- RFA an extension of ANL design (Rosenberg and Harkay)
- Can measure either ion (shown) or electron distributions
- Potential of beam edge ~1000 V, beam axis ~ 2000 V

RPA 030105

1.5 F

Charge (pC)

L] 200 1000 1500 200

Retarding Bias (V)
Ref: Michel Kireeff Covo, Physical Review Special Topics — Accelerators and Beams 9, 063201 (2006).
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— A first -
time-dependent measurement of absolute electron cloud density*

(A/RFA (B) ((|3

- Retarding field analyzer (RFA)
measures potential on axis = ion-
repeller potential B :
025 1 2500 2 00EH0 ¢
0.2 ' ooy . - 20040 E -1L.OE-012 -
- Ccanns. ' 1 = E :
= 0as | 1 1500 % E -LOE-0Z |
E 0.1 é é L000 g ‘;’E 3.0E-02 ; —B,Cand S on
5 05 E = B,C and S on - S0 E i ~4.0E-02 ; —B/Coffand § on
o + B,C off and S on 0 l,'g E0E-02 é — B,C and S off
C - B,C and 8 off . C
_"}“5 T T T T T T - _5“0 'GOE-{IZ Ciavpdwonvdonsnbonnvdnannbonsnivonyipaanboponioanaiveanionpsioanaboronfnonny
. | o 1 2 3 4 s o 1 2 3 4 5 6 7 8 9 10111213 1415
Time (ps) Time (ps)
* + beam/e- distr. => f=N./N,c.m + e velocity drift => f=N/N..m
Beam neutralization | B, C, S on B, C, S off
from RFA and clearing electrodes | Clear. Electrode A ~ 7% ~25% ~ 89%
RFA (~ 7%) ~27% ~79%

*Michel Kireeff Covo, et al, Phys. Rev. Lett. 97, 054801 (2006).
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Simulations with beam reconstructed from slit scans —

improved agreement

L = experin
. Effects of electrons on beam oW € exp

— beam loading in simulation now X %
uses reconstructed data from slit-

nent ngh e-

[

plate measurements “'Noe- simulationHigh e-
leads to improved agreement ' k) l.
between simulation and g@m
experiment Semi-gaussian load => I el S S

“"No e- simuZation ngh e-

New load from = I LS. I

reconstructed data =>
X X

Reconstructed X-Y
distribution from slit-plate
measurements
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Beam potential when electrons are detrapped can indicate
their origin

Requires electron bounce
time (~10 ns) short relative to
beam tail decay (~1 us)

High detrapping energy of
electrons = gas ionization (or
scattered e-)

Low detrapping energy = e-
from walls (or near walls).
Why >400 eV width?
Electrons with E,= 1500 eV
decrease with volume of e-

GEC (uA)

Beam potential measured with
RPA, from energy of expelled
ions (from beam impact on gas)
[Michel Kireeff Covo]
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Electron accumulation and effects on beam transport in
solenoidal field — initial experiments

Solenoids Electron collectors/ Electron
/\ clearing rings suppressor rings
T _ —r . /\

Injector 8¢cm
" | — TE 1 — '|'|—|'|'._. - ]
k—65 cm—
Insulator Coax cable to

1st suppressor ring

| { & Short electrodes in
) )

~ 0 solenoids expel or attract
& electrons, long electrodes
collect or emit electrons along

solenoidal field lines between magnets.

iv=10
o
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