Run 33544, EVENT 6476 27-AFE-1990 Dri05 Source: Run Data Poli R Trigger: Energy CDC Radron Beam Crossing 1715157796

Internal Alignment of VXD3

David Jackson

Oxford University / RAL

Overview

- VXD3 at SLD
- Observing misalignments with the track data
- Matrix technique to unfold alignment corrections
- Comments on SiD tracker alignment

SiD Tracking Meeting SLAC 25th March 2005

Apparent hit position on a CCD due to misalignment.

$$\delta_{z} = -\delta z + \delta r \tan \lambda + \delta \alpha r \tan^{2} \lambda + \delta \gamma L_{\phi} \tan \lambda + \delta \beta L_{\phi}$$
$$\delta_{L\phi} = -\delta \eta + \frac{\delta r}{r} L_{\phi} + \frac{\delta \gamma}{r} L_{\phi}^{2} + \delta \alpha L_{\phi} \tan \lambda - \delta \beta r \tan \lambda$$

- The CCDs themselves provide the most precise measurements of the track trajectory
- Construct internal constraints with track fixed to two CCD hits and measure 'residual' to the third
- All CCDs in for each residual type contribute to the residual in proportion to a lever-arm weight
- In 'overlap' regions only 2 CCDs contribute a significant weight
- VXD3 'doublets', 'shingles' and 'triplets' connected the North/South halves, CCDs within each layer and the three layers of the detector respectively.

...three further residual types were added

Functional forms of residual distributions for 3D rigid body misalignments:

Type	Functional Form	N_I	N_C
Shingles	$egin{aligned} \delta_z &= s_1^{\parallel} + s_2^{\parallel} an\lambda + s_3^{\parallel} an^2 \lambda \ \delta_{L\phi} &= s_1^{\perp} + s_2^{\perp} an\lambda \end{aligned}$	96 96	288 192
Doublets	$egin{aligned} \delta_z &= d_1^{\scriptscriptstyle \parallel} + d_2^{\scriptscriptstyle \parallel} \mathrm{L}_\phi \ \delta_{L\phi} &= d_1^{\scriptscriptstyle \perp} + d_2^{\scriptscriptstyle \perp} \mathrm{L}_\phi + d_3^{\scriptscriptstyle \perp} \mathrm{L}_\phi^2 \end{aligned}$	48 48	96 144
Triplets	$\begin{split} \delta_{z} &= t_{1}^{\parallel} + t_{2}^{\parallel} \tan \lambda + t_{3}^{\parallel} \tan^{2} \lambda + t_{4}^{\parallel} \mathcal{L}_{\phi} \tan \lambda + t_{5}^{\parallel} \mathcal{L}_{\phi} \\ \delta_{L\phi} &= t_{1}^{\perp} + t_{2}^{\perp} \mathcal{L}_{\phi} + t_{3}^{\perp} \mathcal{L}_{\phi}^{2} + t_{4}^{\perp} \mathcal{L}_{\phi} \tan \lambda + t_{5}^{\perp} \tan \lambda \end{split}$	80 80	400 400
Pairs	$egin{aligned} \delta_{rz} &= p_1^{\parallel} + p_2^{\parallel} an \lambda + p_3^{\parallel} an^2 \lambda \ \delta_{r\phi} &= p_1^{\perp} + p_2^{\perp} an \lambda \ \delta_{\phi} &= p_1^{\phi} + p_2^{\phi} an \lambda \end{aligned}$	28 28 28	84 56 56
CDC Angle	$egin{aligned} &\delta_\lambda = c_1^\lambda + c_2^\lambda an\lambda + c_3^\lambda an^2\lambda \ &\delta_\phi = c_1^\phi + c_2^\phi an\lambda \end{aligned}$	56 56	168 112
IP Constraint	$\delta_{r\phi}=i_1^{\perp}+i_2^{\perp} an\lambda$	56	112
	Total	700	2108

A total of 700 polynomial fits to residual distributions like...

- The above shingle conforms very well to the predicted functional forms
- Vertical scatter is due to the intrinsic spatial hit resolution of the CCDs
- Removal of outlayers is shown by the red circles on the triplet fits

The two fits to each of two triplet regions (one triple on left, the other on right)

 $S_{ij}^{T} = f_{i}^{ij} + f_{2}^{ij} \tan \lambda + f_{3}^{ij} \tan^{2} \lambda + f_{4}^{ij} \tan \lambda L \phi + f_{5}^{ij} L \phi$

 $\delta_{\perp}^{T} = t_{\perp}^{\perp} + t_{\perp}^{\perp} \perp \phi + t_{\perp}^{\perp} \perp \phi + t_{\perp}^{\perp} t_{\perp} \phi + t_{\perp}^{\perp} t_{\perp} \phi + t_{\perp}^{\perp} t_{\perp} \phi$

Internal Alignment Matrix Equation I

The residual fits involve a large number of related simultaneous linear equations in the unknown alignment parameters; these are organised into a single matrix equation

 $s_1^{*}(96)$ $s_2^{\scriptscriptstyle \parallel}(96)$ $s_{3}^{II}(96)$ $s_1^{\perp}(96)$ δz_1 $s_{2}^{\perp}(96)$ Weight matrix $d_1^{||}(48)$ determined to an δz_{96} Coefficients $\delta \eta_i$ extremely good $t_1^{\parallel}(80)$ $\dots \mathbf{A}(w_i, r_i, a_i, b_i, f_i).$ $\delta \mathbf{r}_j$ measured in approximation from $\delta \alpha_i$ residual fits the known ideal $\delta \beta_j$ $p_1^{\parallel}(28)$ $\delta \gamma_j$ geometry $\delta \mathbf{x}$ δv $c_{1}^{\lambda}(56)$ $i_1^{\perp}(56)$

> Alignment corrections to be determined

 $i_2^{\perp}(56)$

Singular Value Decomposition

Then if Ax = b (for vectors *x*,*b*)

The solution $x_0 = \mathbf{A}^+ b$ is such that: $|\mathbf{A}x_0 - b|$ has minimum length

That is, the SVD technique gives the closest 'least squares' solution for an over-constrained (and possibly singular) system

CCD shapes from optical survey

Fitted 14-parameter Chebychev polynomial shape, as well as CCD position, used as rigid body starting point for internal alignment

A large number of track residual distributions showed signs of the CCD shapes deviating from the optical survey data.

The biggest effects could be described my a 4th order polynomial as a function of the z axis

An arbitrary surface shape can be introduced by setting:

 $\delta r \to \delta r + f(z)$

$$\begin{array}{c} f(z_{0}) & \delta q = f('_{4}) \\ \hline \\ & \delta q = f('_{4}) \\ \hline \\ z_{0}^{2} 0 & z_{0}^{2} & y_{4} & z_{0}^{2} & y_{2} & z_{0}^{2} & y_{4} \\ \hline \\ z_{0}^{2} 0 & z_{0}^{2} & y_{4} & z_{0}^{2} & y_{4} & z_{0}^{2} & y_{4} \\ \hline \\ z_{0}^{2} 1 & \delta t = f('_{4}) \\ \hline \\ \delta t = f('_{4}) \\ \delta t = f('_{4}) \\ \hline \\ \delta t = f('_{$$

$$f(z_{g}) = c_{1} z_{0} + c_{2} z_{0}^{2} + c_{3} z_{0}^{3} + c_{y} z_{g}^{4}$$

For convenience the A LITTLE ALGEBRA base of the CCDs (each 8cm in length) $c_1 = 16 \text{ sq} = 12 \text{ sh}$ was taken as: $c_2 = -\frac{208}{3} \text{ sg} + 76 \text{ sh}$

 $z_{\rm B} = (r \tan \lambda)/8$

$$C_{1} = 16 \, \$ q - 12 \, \$ h + \frac{16}{3} \, \$ t$$

$$C_{2} = -\frac{208}{3} \, \$ q + 76 \, \$ h - \frac{112}{3} \, \$ t$$

$$C_{3} = 96 \, \$ q - 128 \, \$ h + \frac{229}{3} \, \$ t$$

$$C_{4} = -\frac{128}{3} \, \$ q + 64 \, \$ h - \frac{128}{7} \, \$ t$$

With shape parameters included the same residual distributions

The required new fit coefficients < roughly doubling the total number to 4,160

Six examples of the 28 Pair δrz residual fits

(would take quadratic form without shape corrections)

Important to correctly take into account correlations in each fit.

Internal Alignment Matrix Equation II

Each of 700 ٢ı 1 2109 ×578 residual fit error 50. RIGID BODY matrices used to Extra constraints 59 WEIGHT MATRIX such as determine linearly Shi T: independent basis Stag $\delta q_i = 0.0 \pm 5.0 \ \mu m$ δx in each case. бу 5026 × 866 used to ensure stable solution. WEIGHT MATRIX T700 34,770 C416r The SVD 4,352,516 ELEMENTS 0 866 ARE NON-ZERO technique is CONSTRAINTS (~ 0.8% OCCUPANCY) improved from a 'least squares' to an optimal χ^2 fit. RESIDUAL FITS => 700 4,160 PARAMETERS C: +16,332 CORRELATION TERMS IN Ti

866 ($9 \times 96 + 2$) alignment corrections to be determined

'Before' and 'After' Triplet Residuals
Using optical survey geometry
After track-based alignment
×10³

Post-alignment single hit resolution $\sim 3.6 \ \mu m$

Triplet residual mean as function of ϕ -dependent index

Before Alignment

• After Alignment

Systematic effects \lt 1µm level

Pair Residuals rms at Interaction Point

(divided by $\sqrt{2}$ to give single track contribution)

Impact Parameter resolution (for full track fit):

$$\sigma_{rz} = 9.7 \oplus \frac{33}{p \sin^{3/2} \theta} \mu \mathrm{m} \qquad \qquad \sigma_{r\phi} = 7.8 \oplus \frac{33}{p \sin^{3/2} \theta} \mu \mathrm{m}$$

...design performance achieved

Comments for SiD tracker I

Singular Value Decomposition – this alignment technique allowed a robust unbiased solution for SLD; but the method is somewhat secondary in that any technique will have similar statistical dependence on the data and geometry.

Alignment is aided by:

- Symmetry of the detector greatly assists book-keeping and allows comparison of different parts of the detector.
- Overlap regions allows devices to be stitched together with favourable lever arm (data α area of overlap).
- Large devices obviously better to have a single element than two with an overlap.

Comments for SiD tracker II

- **Stability** the geometry (devices and support structure) should be stable with respect to time. Changes due to temperature fluctuations, cycling of magnetic field, ageing under gravity/elastic forces, should be 'small'; at least over a period of time long enough to collect sufficient track data for alignment.
- **Shape** within reason the shape of the device is irrelevant; only the uncertainty in the shape is important and the ability to describe the shape correction with as few parameters as possible. Making the devices 'flat' is somewhat arbitrary; introducing a deliberate bow of around 1% could greatly increase mechanical stability and decrease shape uncertainty without effecting tracking performance.

Alignment Shape Corrections

Single hit resolution

