Internal Alignment of VXD3

David Jackson Oxford University / RAL

Overview

- VXD3 at SLD
- Observing misalignments with the track data
- Matrix technique to unfold alignment corrections
- Comments on SiD tracker alignment

SiD Tracking Meeting SLAC
25 ${ }^{\text {th }}$ March 2005

VXD3

Rigid Body Alignment in 3D:

3 translation +3 rotation parameters
Global Alignment:
(align to CDC)
$1 x$

$=6$ parameters

CCD single hit resolution $<5 \mu \mathrm{~m}$, Optical survey precision ~ $10 \mu \mathrm{~m}$
$96 x$

Apparent hit position on a CCD due to misalignment.

(a) rz View

(b) r φ View

$$
\begin{aligned}
\delta_{z} & =-\delta \mathrm{z}+\delta \mathrm{r} \tan \lambda+\delta \alpha \mathrm{r} \tan ^{2} \lambda+\delta \gamma \mathrm{L}_{\phi} \tan \lambda+\delta \beta \mathrm{L}_{\phi} \\
\delta_{L \phi} & =-\delta \eta+\frac{\delta \mathrm{r}}{\mathrm{r}} \mathrm{~L}_{\phi}+\frac{\delta \gamma}{\mathrm{r}} \mathrm{~L}_{\phi}^{2}+\delta \alpha \mathrm{L}_{\phi} \tan \lambda-\delta \beta \mathrm{r} \tan \lambda
\end{aligned}
$$

■ The CCDs themselves provide the most precise measurements of the track trajectory

■ Construct internal constraints with track fixed to two CCD hits and measure 'residual' to the third

■ All CCDs in for each residual type contribute to the residual in proportion to a lever-arm weight

- In ‘overlap’ regions only 2 CCDs contribute a significant weight

■ VXD3 'doublets', ‘shingles’ and 'triplets' connected the North/South halves, CCDs within each layer and the three layers of the detector respectively.

SHINGLES

TRIPLETS

...three further residual types were added

Functional forms of residual distributions for 3D rigid body misalignments:

Type	Functional Form	N_{I}	N_{C}				
Shingles	$\begin{aligned} & \delta_{z}=s_{1}^{\\|}+s_{2}^{\\|} \tan \lambda+s_{3}^{\\|} \tan ^{2} \lambda \\ & \delta_{L \phi}=s_{1}^{\perp}+s_{2}^{\perp} \tan \lambda \end{aligned}$	96 96	288 192				
Doublets	$\begin{aligned} & \delta_{z}=d_{1}^{\\|}+d_{2}^{\\|} \mathrm{L}_{\phi} \\ & \delta_{L \phi}=d_{1}^{\perp}+d_{2}^{\perp} \mathrm{L}_{\phi}+d_{3}^{\perp} \mathrm{L}_{\phi}^{2} \end{aligned}$	$\begin{aligned} & 48 \\ & 48 \end{aligned}$	96 144				
Triplets	$\begin{aligned} & \delta_{z}=t_{1}^{\\|}+t_{2}^{\\|} \tan \lambda+t_{3}^{\dagger} \tan ^{2} \lambda+t_{4}^{\\|} \mathrm{L}_{\phi} \tan \lambda+t_{5}^{\\|} \mathrm{L}_{\phi} \\ & \delta_{L \phi}=t_{1}^{\perp}+t_{2}^{\perp} \mathrm{L}_{\phi}+t_{3}^{\perp} \mathrm{L}_{\phi}^{2}+t_{4}^{\perp} \mathrm{L}_{\phi} \tan \lambda+t_{5}^{\perp} \tan \lambda \end{aligned}$	80 80	$\begin{aligned} & 400 \\ & 400 \end{aligned}$				
Pairs	$\begin{aligned} & \delta_{r z}=p_{1}^{\\|}+p_{2}^{\\|} \tan \lambda+p_{3}^{\\|} \tan ^{2} \lambda \\ & \delta_{r \phi}=p_{1}^{\perp}+p_{2}^{\perp} \tan \lambda \\ & \delta_{\phi}=p_{1}^{\phi}+p_{2}^{\phi} \tan \lambda \end{aligned}$	28 28 28	84 56 56				
CDC Angle	$\begin{aligned} & \delta_{\lambda}=c_{1}^{\lambda}+c_{2}^{\lambda} \tan \lambda+c_{3}^{\lambda} \tan ^{2} \lambda \\ & \delta_{\phi}=c_{1}^{\phi}+c_{2}^{\phi} \tan \lambda \end{aligned}$	56 56	168 112				
IP Constraint	$\delta_{r \phi}=i_{1}^{\perp}+i_{2}^{\perp} \tan \lambda$	56	112				
	Total	700	2108				

A total of 700 polynomial fits to residual distributions like...

The two fits to one shingle region

- The above shingle conforms very well to the predicted functional forms
- Vertical scatter is due to the intrinsic spatial hit resolution of the CCDs
- Removal of outlayers is shown by the red circles on the triplet fits

The two fits to each of two triplet regions (one triple on left, the other on right)

Internal Alignment Matrix Equation I

The residual fits involve a large number of related simultaneous linear equations in the unknown alignment parameters; these are organised into a single matrix equation

Weight matrix determined to an extremely good approximation from the known ideal geometry		$\left(\begin{array}{c}\delta z_{1} \\ \vdots \\ \delta z_{96} \\ \delta z_{j} \\ \delta j_{j} \\ \delta r_{j} \\ \delta j_{j} \\ \delta \beta_{j} \\ \delta \gamma_{j} \\ \delta \mathrm{x} \\ \delta \mathrm{y}\end{array}\right)$		Coefficients measured in residual fits

Alignment
corrections to be determined

Singular Value Decomposition

$s_{1} \ldots s_{r}$ are called the 'singular values' of matrix $A ; s_{i} \sim 0$ corresponds to a singularity of \mathbf{A} Here's the SVD trick:
define the inverse $\mathbf{A}^{+}=\mathbf{V} \mathbf{S}^{+} \mathbf{U}^{\top}$ with $\mathbf{S}^{+}=$

Then if $\mathbf{A} \boldsymbol{x}=b$ (for vectors x, b)
The solution $x_{0}=\mathbf{A}^{+} b$ is such that: $\quad\left|\mathbf{A} x_{0}-b\right|$ has minimum length
That is, the SVD technique gives the closest 'least squares' solution for an over-constrained (and possibly singular) system

CCD shapes from optical survey
Fitted 14-parameter Chebychev polynomial shape, as well as CCD position, used as rigid body starting point for internal alignment

A large number of track residual distributions showed signs of the CCD shapes deviating from the optical survey data.

The biggest effects could be described my a $4^{\text {th }}$ order polynomial as a function of the z axis

An arbitrary $\quad 4^{\text {Th }}$ ORDER POLYNOMIAL 'FIXED' AT EACH END surface shape can be introduced by

$$
\text { (RIGID BODY } \delta r \text {, } \delta \alpha \text { CORRECTIONS ALLOW ENDS TO MOVE) }
$$ setting:

$$
\delta r \rightarrow \delta r+f(z)
$$

$$
\delta_{q}=f(1 / 4)
$$

$$
\delta h=f(1 / 2)
$$

$$
\delta t=f(3 / 4)
$$

$$
f(z)=c_{1} z_{0}+c_{2} z_{0}^{2}+c_{3} z_{6}^{3}+c_{4} z_{8}^{4}
$$

For convenience the A LITTLE ALGEBRA... base of the CDs (each 8 cm in length) was taken as:

$$
\mathrm{z}_{\mathrm{B}}=(r \tan \lambda) / 8
$$

$$
\begin{aligned}
& c_{1}=16 \delta q-12 \delta h+\frac{16}{3} \delta t \\
& c_{2}=-\frac{208}{3} \delta q+76 \delta h-\frac{112}{3} \delta t \\
& c_{3}=96 \delta q-128 \delta h+\frac{224}{3} \delta t \\
& c_{4}=-\frac{128}{3} \delta q+64 \delta h-\frac{128}{3} \delta t
\end{aligned}
$$

With shape parameters included the same residual distributions were fitted to extended higher order functional forms:

The required new fit coefficients Δ roughly doubling the total number to 4,160

Six examples of the 28 Pair $\delta r z$ residual fits

(would take quadratic form without shape corrections)

Pairs, using

$$
\begin{aligned}
& \mathrm{Z}^{0} \rightarrow \mu^{+} \mu^{-} \\
& \mathrm{Z}^{0} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}
\end{aligned}
$$

events, were the most limited in statistics.

Important to correctly take into account correlations in each fit.

Internal Alignment Matrix Equation II

The SVD technique is improved from a 'least squares' to an optimal χ^{2} fit.

 such as $\delta q_{i}=0.0 \pm 5.0 \mu \mathrm{~m}$ used to ensure stable solution.
34,770 OUT OF
$4,352,516$ ELEMENTS ARE NON-ZERO
($\sim 0.8 \%$ OCCUPANCY)

700 RESIDUAL FITS \Rightarrow
4,160 PARAMETERS C_{i}
$+16,332$ CORRELATION TERMS IN T_{i}
$866(9 \times 96+2)$ alignment corrections to be determined

'Before' and 'After' Triplet Residuals

- Using optical survey geometry
\square After track-based alignment

Post-alignment single hit resolution $\sim 3.6 \mu \mathrm{~m}$

Triplet residual mean as function of φ-dependent index

- Before Alignment
- After Alignment

Systematic effects $\leqslant 1 \mu \mathrm{~m}$ level

Pair Residuals rms at Interaction Point

(divided by $\sqrt{ } 2$ to give single track contribution)

Impact Parameter resolution (for full track fit):

$$
\begin{array}{r}
\sigma_{r z}=9.7 \oplus \frac{33}{p \sin ^{3 / 2} \theta} \mu \mathrm{~m} \quad \sigma_{r \phi}=7.8 \oplus \frac{33}{p \sin ^{3 / 2} \theta} \mu \mathrm{~m} \\
\text {...design performance achieved }
\end{array}
$$

Comments for SiD tracker I

- Singular Value Decomposition - this alignment technique allowed a robust unbiased solution for SLD; but the method is somewhat secondary in that any technique will have similar statistical dependence on the data and geometry.

Alignment is aided by:
I. Symmetry of the detector - greatly assists book-keeping and allows comparison of different parts of the detector.

- Overlap regions - allows devices to be stitched together with favourable lever arm (data α area of overlap).
- Large devices - obviously better to have a single element than two with an overlap.

Comments for SiD tracker II

- Stability - the geometry (devices and support structure) should be stable with respect to time. Changes due to temperature fluctuations, cycling of magnetic field, ageing under gravity/elastic forces, should be 'small'; at least over a period of time long enough to collect sufficient track data for alignment.
- Shape - within reason the shape of the device is irrelevant; only the uncertainty in the shape is important and the ability to describe the shape correction with as few parameters as possible. Making the devices 'flat' is somewhat arbitrary; introducing a deliberate bow of around 1% could greatly increase mechanical stability and decrease shape uncertainty without effecting tracking performance.

Alignment Shape Corrections

Single hit resolution

hit resolution consistently $\sim 3.8 \mu \mathrm{~m}$

