

LHC Physics

Make great discoveries in TeV energy scale to advance our understanding:

- Electroweak Symmetry
 Breaking
- Origin of Dark Matter

Physics Models
Higgs
Supersymetry
Technicolor
Extra-Dimension

• • •

Experiment Challenge at LHC

Pile up at different luminosities

$H\rightarrow ZZ\rightarrow \mu\mu ee$ event with $M_H=300$ GeV

Lepton Signals Are the Keys for Discovery !

- Lepton identifications: high efficiency, low fake rate
- Excellent energy and momentum resolution
- Trigger at low Pt
- Clean Signature for new physics discoveries!
- Detector can be well understood from $Z \rightarrow \ell^+\ell^-$ events

Search for New Physics Studies

SM Higgs H ⁰	Look for final states with ℓ , and γ :
	$ \underline{H \rightarrow \gamma \gamma}$, $H \rightarrow bb$ (with tt or W with lepton decays), $\underline{H \rightarrow \tau \tau}$ (via VBF),
	$ \frac{\text{H} \rightarrow \text{ZZ}*/\text{ZZ} \rightarrow \ell^+\ell^-\ell^-}{\text{H}}, \ \ell^+\ell^-\text{VV}, \ \ell^+\ell^-\text{II}, \ \text{H} \rightarrow \text{WW}* \rightarrow \ell^+\text{V} \ \ell^-\text{V} \ \text{or} \ \ell\text{V} \ \text{II} $
	(via BVF)
Extended Models	SM-like: $h \rightarrow \gamma \gamma$, bb; $H \rightarrow 4\ell$
H ⁰ ,h ⁰ ,A ⁰ ,H ⁺ H ⁻ & H++, H	MSSM-specific: $\frac{A/H \to \mu\mu}{A/H \to \chi^2_0 \chi^2_0 \to 4\ell}$ + missing Energy
Supersummetry	Like-sign leptons, multi-leptons and Jets with Missing E _T
Heavy Q Q	$Q \rightarrow W q \rightarrow \ell + jets$
New bosons Z', W'	$Z' \rightarrow \ell^+\ell^-, \ W' \rightarrow \ell \ V$
Technicolor	$\rho_{T} \rightarrow WZ \rightarrow \ell \nu \ell \ell, \rho_{T} \rightarrow W\pi \rightarrow \ell \nu bb$
L/Q structure	$Pp \rightarrow LQ LQ \rightarrow \ell q \ell q$: High-mass di-leptons, Missing E_T
Extra-dimension	High-mass di-leptons, narrow lepton resonances, Jets+Missing \mathbf{E}_{T}
Composite Models	pp→L+L-→ ZZ+2leptons → 6 leptons, pp→ ee*→ eeγ
Strongly-couples	High mass spectra: $W_L Z_L \rightarrow W_L Z_L \rightarrow e_V e_\ell$, $Z_L Z_L \rightarrow Z_L Z_L \rightarrow e_\ell e_\ell$
Vector-bosons	$W_LW_L \rightarrow Z_LZ_L \rightarrow ee ee$

New Physics with Multi-lepton Final States

Single lepton	SM: $W \rightarrow \ell v$ $W + jets \rightarrow \ell v + x$ $tt/bb \rightarrow \ell + x$	$W' \rightarrow \ell \nu$ $H \rightarrow bb + W/tt(with W \rightarrow \ell \nu)$ $H \rightarrow WW^* \rightarrow \ell \nu \text{ if (via BVF)}$ $\rho_T \rightarrow W\pi \rightarrow \ell \nu bb$ $Q \rightarrow W q \rightarrow \ell + \text{jets}$
Di-lepton	SM $Z/\gamma^* \rightarrow \ell^+\ell^-$ $Z+jets \rightarrow \ell^+\ell^- + x$ $tt/ww \rightarrow \ell^+\ell^- + x$	H→WW*→ $\ell^+ \nu \ell^- \nu$ A/H → μμ, ττ Like-sign dileptons from SUSY particle decays High mass narrow resonances: Z'→ $\ell^+ \ell^-$, G*→ $\ell^+ \ell^-$, pp→ LQ LQ → $\ell q \ell q$ pp→ ee*→ ee γ
Triple-lepton	SM $WZ \rightarrow e_V ee$	$\begin{array}{c} \rho_{T} \rightarrow WZ \rightarrow \ell_{V} \ell \ell \\ W_{L}Z_{L} \rightarrow W_{L}Z_{L} \rightarrow \ell_{V} \ell \ell \\ pp \rightarrow W^{*} \rightarrow \chi_{1}^{+}\chi_{2}^{0} \rightarrow W + \chi_{1}^{0} + Z^{*}\chi_{1}^{0} \rightarrow \ell \ell \ell + \text{Missing E}_{T} \end{array}$
Four-leptons Six-leptons	SM ZZ → e + e - e + e -	$\begin{array}{l} \text{H} \rightarrow \text{ZZ*/ZZ} \rightarrow \ell^+\ell^-\ell^-\\ \text{A/H} \rightarrow \chi^2_0 \chi^2_0 \rightarrow 4\ell + \text{missing Energy}\\ \text{Z}_L \text{Z}_L \rightarrow \text{Z}_L \text{Z}_L \rightarrow \ell\ell \ell\ell, W_L \text{W}_L \rightarrow \text{Z}_L \text{Z}_L \rightarrow \ell\ell \ell\ell\\ \text{pp} \rightarrow \text{L}^+\text{L}^- \rightarrow \text{ZZ+2leptons} \rightarrow 6 \text{ leptons} \end{array}$

ATLAS and CMS Detectors

> 10 years of hard work in design and constructions

ATLAS

Length: ~45 m

Diameter: ~24 m

Weight: ~ 7,000 tons

Electronic channels: ~ 108

Solenoid: 2 T

Air-core toroids

CMS

Length: ~22 m

Diameter: ~14 m

Weight: ~ 12,500 tons

Solenoid: 4 T

Fe yoke

Compact and modular

Excellent Standalone Muon Detector

Excellent EM Calorimeter

Detector Technologies

		1 202 40
	ATLAS (A Toroidal LHC Apparatus)	CMS (The Compact Muon Solenoid)
TRACKER	Si pixels + strips TRT \rightarrow particle identification $\sigma/p_T \sim 5 \times 10^{-4} p_T \oplus$ 0.01	Si pixels + strips No particle identification $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon σ/E ~ 10%/√E uniform longitudinal segmentation	PbWO ₄ crystals σ /E ~ 2-5%/√E no longitudinal segmentation
HAD CALO	Fe-scint. + Cu-liquid argon (\geq 10 λ) $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$	Brass-scint. (≥ 5.8+catcher) σ/E ~ 100%/√E ⊕ 0.05
MUON	MDT, CSC, RPC, TGC $\sigma/p_T \sim 7$ % at 1 TeV standalone	DT, CSC, RPC $\sigma/p_T \sim 5\%$ at 1 TeV combining with tracker
	EM CALO HAD CALO	(A Toroidal LHC Apparatus) Si pixels + strips TRT \rightarrow particle identification $\sigma/p_T \sim 5 \times 10^{-4} \ p_T \oplus 0.01$ Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation HAD CALO Fe-scint. + Cu-liquid argon ($\geq 10 \ \lambda$) $\sigma/E \sim 50\%/\sqrt{E} \oplus 0.03$ MDT, CSC, RPC, TGC $\sigma/p_T \sim 7 \%$ at 1 TeV

Trigger Tables

Trigger type	ATLAS (GeV) Threshold	CMS (GeV) Threshold
Inclusive isolated e/γ	25	29
Two electrons/Two photons	15	17
Inclusive isolated muon	20	14
Two muons	6	3
Inclusive τ-jet	-	86
Two τ-jet	-	59
τ-jet and E ^T _{miss}	25 and 30	-
1-jet, 3-jets, 4-jets	200,90,65	177,86,70
Jet and E ^T _{miss}	60 and 60	
Electron and Jet		21 and 45
Electron-Muon	15*10	-
+calibration, monitoring, etc		

*Typical LVL1 menu for L= 2.10³³cm⁻²s⁻¹ *all thresholds are adjustable *multiple signature allow lower thresholds *total rate ~20kHz (allowing safety margin and deferrals)

Major Challenges

Super conducting magnets:

- CMS:

one solenoid* 6m diameter 13 meter long, field 4T

- ATLAS:
 - Solenoid* 2.5 m diameter 5m long, field 2T
 - Barrel toroid* 8 20m long coils
 - 2 endcap toroids 8 5m long coils

 $|\eta| < 2.7$

- The last(8-th) Barrel Toroid coil installed in Aug. 2005
- Barrel calorimeter (LAr EM + HAD Fe/Scint. Tilecal) in final position at Z=0 (Nov. 2005)
- Barrel toroid: cool down completed, first tests towards full field started in Sep. 2006

ATLAS Barrel muon system complete

Endcap Muon Big-Wheel installation
Started in June 2006

TGC Big-Wheel (C-1)

High Precision Tracking for Muon Detections

ATLAS

|h| coverage to 2.7, Δ p/p ~ 8% @ 1TeV (Δ s/s ~ 50 μ)

Precision tracking with MDT With gas pressure of 3 bar

Test Beam results

Muon and Electron Identifications

Muons:

Muon spectrometer track
 (MS: trigger + drift-tube chamb.),
 can be combined with the inner detector track.

(ID: silicon detector + TRT)

 Low-p_T muons: ID track combined with MS hits.

Electrons:

- Shower-shape analysis in the fine-granularity calorimeter, clusters are always matched with the ID track.
- Low-p_T electrons:
 ID combined with clusters.

Isolation criteria (given by the calorimeter or by the inner detector): suppressing leptons which come from jets.

ATLAS: Muon Detection Efficience

Study based ATLAS CSC data sample: Z $\rightarrow \mu\mu$

Fake μ rate as a function of Muon P_T

Full simulation: tt $\rightarrow \mu + x$ (1M events), $Z \rightarrow \mu\mu$ (1M events)

Benchmark Studies on Muon Final States

ATLAS: Bench mark: Z' μμ

3 TeV Z' mass spectrum

Z' Charge Asymmetry

ATLAS: Muon Spectrometer Performance

High Pt Muon Charge Identification is Essential for new physics

X-dim: dilepton from G* exchange

Charge asymmetry measurement

would help to pin-down the 'origin'

Unique feature of the ATLAS Standalone Muon System

CMS: ECAL Energy Resolution

CMS: Electron Detection Performance Studies

CMS: Benchmark Studies: H → 4e

Before the cuts

MC experiment

After the cuts

MC experiment

Higgs Discovery Channels at LHC

Dominant BR for $m_H < 2m_Z$:

for m(H) = 120 GeV

- \rightarrow no hope to trigger or extract fully hadronic final states
- \rightarrow look for final states with ℓ , γ $(\ell = e, \mu)$

Low mass region: $m(H) < 2 m_7$:

 $H \rightarrow \gamma \gamma$: small BR, but best resolution

 $H \rightarrow bb : good BR, poor resolution \rightarrow ttH, WH H \rightarrow ZZ^* \rightarrow 4\ell$

 $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ or $\ell \nu jj$: via VBF

 $H \rightarrow \tau \tau$: via VBF

 $\frac{m(H) > 2 m_Z :}{H \to ZZ \to 4\ell}$ $qqH \rightarrow ZZ \rightarrow \ell\ell \ vv \ *$ $qqH \rightarrow ZZ \rightarrow \ell\ell jj$ $qqH \rightarrow WW \rightarrow \ell \nu j j$ * * for $m_H > 300 \, GeV$ forward jet tag

ATLAS: Z→ 4leptons

FULL SIMULATION	m _H =130 GeV	m _H =160 GeV	m _H =180 GeV	т _Н =280 GeV
	$(\delta m = \pm 5 \text{ GeV})$	$(\delta m = \pm 6 \text{ GeV})$	$(\delta m = \pm 7 \text{ GeV})$	$(\delta m = \pm 20 \text{ GeV})$
N _{signal} (gg+VBF)	21.5±0.1	26±1	28.1±0.3	67.4±0.1
$N_{qq \to ZZ} (\times 1.3 \text{ f. } gg \to ZZ)$	11.3±0.3	11.4±0.3	27.3±0.5	40.4±0.6
N _{Zbb}	2±2	2±2	1±1	0±2
N _{rī}	0±0.4	0±0.4	0.5±0.4	0±0.4
Significance (no K)	5.0±0.3	5.5±0.5	4.7±0.2	8.8±0.4
$\mathcal L$ for 5σ discovery	30 fb ⁻¹	25 fb ⁻¹	37.5 fb ⁻¹	11 fb ⁻¹

Differences between muon and electron reconstruction ⇒

FULL SIMULATION	$H \rightarrow 4e$	$H \rightarrow 4\mu$	$H ightarrow 2e2\mu$	total
Significance $m_H = 130 \text{ GeV/c}^2$	1.9	2.6	3.2	5.0

Ensemble tests

Acctual 4ℓ -mass distribution at 30 fb⁻¹ will look more like this:

Small number of entries \Rightarrow variable bin width instead of equidistant bins for the fit of the (S+)B-functions.

Ensemble test of the fit performance (60 subsamples, 25 fb $^{-1}$ each):

$$f_b(m_k) = N_b \cdot \alpha^2(m_k - \epsilon)e^{-\alpha(m_k - \epsilon)}; f_s(m_k) = \frac{N_s}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(m_k - \mu)^2}{2\sigma^2}}$$

	fit results	remark
N _{good fits}	54	max. 60
$<$ N $_s$ - N $_s^{true}>$	2	<nstrue>=23</nstrue>
$<$ N $_b$ - N $_b^{true}>$	3	<n<sub>b^{true} >=86</n<sub>
$<\frac{\chi_b^2-\chi_{s+b}^2}{\chi_{s+b}}>$	1.6	hypothesis test
<signf.></signf.>		"δm"-signf.
$=\frac{N_s}{\sqrt{Var(N_s)}}$	2.9±0.6	4.1±0.3

τ ID: Fraction of Energy in ΔR<0.1

τ-ID efficiencies

- Construct variable that combines all cut variables
- Compare signal and bckgnd
- Can vary cut to get need rejection

VBF H→ ττ Reconstruction

Mass peak reconstruted by means of the collinear approximation:

- $m_H \gg m_{\tau}$, so products of τ -decays fly in the direction of τ -s.
- Possible to calculate the four-momenta for τ-s.

Similar sensitivity observed also in the semi-leptonic channel, $H \to \tau\tau \to (\ell\nu\nu)(\textit{hadrons})$.

CMS Studies: $H \rightarrow \tau \tau$

M _H [GeV]	115	125	135	145
Production σ [fb]	4.65×10^{3}	4.30×10^{3}	3.98×10^{3}	3.70×10^{3}
$\sigma \times BR(H \rightarrow \tau \tau \rightarrow lj)$ [fb]	157.3	112.9	82.38	45.37
$N_{\rm S}$ at 30 fb ⁻¹	10.5	7.8	7.9	3.6
$N_{\rm B}$ at 30 fb ⁻¹	3.7	2.2	1.8	1.4
Significance at 30fb^{-1} ($\sigma_{\text{B}} = 7.8\%$)	3.97	3.67	3.94	2.18
Significance at 60fb^{-1} ($\sigma_{\text{B}} = 5.9\%$)	5.67	5.26	5.64	3.19

Remarks on forward Jet tagging

The searches in the VBF channels strongly rely on a good understanding of the jet distributions:

- Theory: underlying event uncertainties.
- Experiment:

Pile-up affects the rapidity gap between two forward jets. Jet energy calibration (cross-section depends on the $p_T^{jet}-cuts$).

Comparison of different generators \rightarrow hint for systematic uncertainties:

LRettlamder

PYTHIA 6.323, new showering model; BUG PYTHIA 6.323, old showering model; BUG

PYTHIA 6.403, new showering model PYTHIA 6.403, old showering model

HERWIG

Final evaluation of the generators and det. perf. to be done with data. (Z + jets): handle for the jet distributions;

reference for the Higgs VBF cross-section (same depend. on the $p_T^{\rm jet}$ -cuts).

H → WW →dileptons+MET

- $BR(H \to WW)$ is nearly 98% for a Higgs boson with $m_H \approx 160$ GeV.
- Backgrounds from WW, $t\bar{t}$, WZ.
- Use the lepton spin correlations:

ullet No mass peak, have to use m_T :

$$m_T = \sqrt{2p_T^{\ell\ell} E_T (1 - \cos \Delta \phi)}$$

If Higgs is Light

How good an EM Calorimeter Do we need for $H \rightarrow \gamma \gamma$?

Benchmark process: $H \rightarrow \gamma \gamma$

$$m_{\gamma\gamma} = \sqrt{2E_{\gamma 1}E_{\gamma 2}(1-\cos\theta_{\gamma 1,\gamma 2})}$$

$$\frac{\Delta m_{\gamma\gamma}}{m_{\gamma\gamma}} = \frac{1}{2} \left[\frac{\Delta E_{\gamma 1}}{E_{\gamma 1}} \oplus \frac{\Delta E_{\gamma 2}}{E_{\gamma 2}} \oplus \frac{\Delta \theta_{\gamma\gamma}}{\tan(\theta_{\gamma\gamma}/2)} \right]$$

(δθ limited by interaction vertex measurement)

CMS Resolution : $\sigma_{E}/E = a/\sqrt{E \oplus b \oplus c/E}$

Aim: Barrel End cap

Stochastic term: a = 2.7% 5.7% Constant term: b = 0.55% 0.55% Noise: Low \mathcal{L} c = 155 MeV 770 MeV

High \mathcal{L} 210 MeV 915 MeV

At 100 GeV : $0.27 \oplus 0.55 \oplus 0.002 \cong 0.6\%$

$H \rightarrow \gamma \gamma$

ATLAS

Discovery Sensitivity

CMS PTDR		ATLAS		
NLO cut based	NLO optimized*	TDR (LO)	New, NLO Cut based	New, NLO likelihood
6.0	8.2	3.9	6.3	8.7

SUSY: Supersymmetric Extensions of SM

- Provide candidate particles for Dark Matter (LSP)
- Higgs mass calculable
- Unification

 $m_{1/2}$: universal gaugino mass at GUT scale m_0 : universal scalar mass at GUT scale $tan\beta$: vev ratio for 2 Higgs doublets $sign(\mu)$: sign of Higgs mixing parameter A_0 : trilinear coupling

Need study many benchmark points...

MSSM Higgs Discovery Potential

At large $\tan \beta$: decays into WW, ZZ and $\gamma \gamma$ are suppressed.

Plane fully covered with 30 fb-1

Early discovery of SUSY?

3 isolated leptons

- + 2 b-jets
- + 4 jets
- + E^{miss}

SUSY Discovery Signals

The distribution of the invariant mass of the two leptons can be shown to have a kinematic edge

$$(m_{ll}^{\rm max})^2 = \frac{(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2)(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{l}_R}^2}$$

Discovery Potential of SUSY (mSUGRA)

Strongly-Coupled Vector Boson System

No light Higgs boson? Study Longitudinal gauge boson scattering in high energy regime (the L-component which provides mass to these bosons).

$$W_L W_L \rightarrow Z_L Z_L \rightarrow 4 leptons$$

 $Z_L Z_L \rightarrow Z_L Z_L \rightarrow 4 leptons$

Strong Symmetry Breaking: Technicolor

No fundamental scalar Higgs (it is a new strong force bounded state) Technicolor predicts existence of technihadron resonance: $\rho_T \rightarrow WZ \rightarrow w+v$

CMS

Muons in Technicolor Model

Lower limits required for 5σ significance with 30 fb⁻¹: in some cases, signals are below observability, but combination of signals could provide strong evidence.

 $\rho_T \rightarrow WZ \rightarrow IvII$ for 30 fb⁻¹ (a) $\sigma xBR_{model} = 0.16$ fb $\sigma xBR_{5\sigma \ discovery} = 0.025$ fb

 $\rho_T \rightarrow W\pi \rightarrow l\nu bb$ for 30 fb⁻¹ (c) $\sigma \times BR_{model} = 0.064$ fb $\sigma \times BR_{5\sigma \ discovery} = 0.15$ fb

List of New Physics Reaches at LHC

SM Higgs

MSSM Higgs

SUSY (squark, gluino)

New gauge bosons (Z')

Quark substructure (Λ_C) a*, 1*

Large ED $(M_D \text{ for } n=2,4)$

Small ED (M_C)

Black holes

100 GeV \sim 1 TeV (30 fb⁻¹)

covers full $(m_A, \tan \beta)$

- $\sim 3 \text{ TeV } (300 \text{ fb}^{-1})$
- $\sim 5 \text{ TeV} (100 \text{ fb}^{-1})$
- $\sim 25/40 \text{ TeV} (30/300 \text{ fb}^{-1})$
- $\sim 6.5/3 \text{ TeV} (100 \text{ fb}^{-1})$
- $\sim 9/6 \text{ TeV } (100 \text{ fb}^{-1})$
- $\sim 6 \text{ TeV } (100 \text{ fb}^{-1})$
- < 6 ~ 10 TeV

Any one of those would change the understanding of our universe!

Looking forward data

The LHC Schedule

- LHC will be closed and set up for beam on August 31, 2007
 - LHC commissioning will take time!
- First collisions expected in November 2007
 - A short pilot run
 - Collisions will be at injection energy ie cms of 0.9 TeV
- First physics run in 2008
 ~ 1 fb⁻¹? 14TeV!
- Physics run in 2009 +...
 - 10-20 fb-1/year
 - \Rightarrow 100 fb⁻¹/year

General References

ATLAS Physics TDR

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/TDR/access.html

CMS Physics TDR

http://cmsdoc.cern.ch/cms/cpt/tdr/

Additional slides

ATLAS: ECAL Energy Resolution

Resolution with new reconstruction at η =0.68

Local energy resolution well understood since Module 0 beam tests and well reproduced by simulation:

- -Sampling term given by lead/argon sampling fraction and frequency: quality control measurements during construction
- Noise term under control
- Local constant term (within a cell) given by impact point correction
- →Uniformity is at 1% level quasi online but achieving ATLAS goal (0.7 %) needs a lot of work, and most of the time was used to correct for setup problem...

CMS: Muon Detection Resolution

