A Silicon-Tungsten ECal for the SiD Concept

Baseline configuration:

transverse segmentation: 12 mm² pixels

• longitudinal: $(20 \times 5/7 \times_0) + (10 \times 10/7 \times_0) \Rightarrow 17\%/\text{sqrt}(E)$

• 1 mm readout gaps ⇒ 13 mm effective Moliere radius

BILCW07

"U.S." Si-W ECal R&D Collaboration

M. Breidenbach, D. Freytag, N. Graf, G. Haller, R. Herbst, J. Jaros

Stanford Linear Accelerator Center

J. Brau, R. Frey, D. Strom, M. Robinson, A.Tubman *U. Oregon*

V. Radeka
Brookhaven National Lab

B. Holbrook, R. Lander, M. Tripathi *UC Davis*

Y. Karyotakis LAPP Annecy

- KPiX readout chip
- downstream readout
- detector, cable development
- mechanical design and integration
- detector development
- readout electronics
- readout electronics
- cable development
- bump bonding
- mechanical design and integration

2

BILCW07

Goal of this R&D

Design a <u>practical</u> ECal which (1) meets (or exceeds) the physics requirements (2) with a technology that would actually work at the ILC.

- The physics case implies a highly segmented "imaging calorimeter" with modest EM energy resolution ⇒ Si-W
- The key to making this practical is a highly <u>integrated</u> electronic readout:
 - readout channel count = pixel count / ~1000
 - requires low power budget (passive cooling)
 - must handle the large dynamic range of energy depositions (few thousand) with excellent S/N
- This takes some time to develop (getting close).
- Testing in beams will be crucial (major test in 2008).

"Imaging Calorimeters"

A highly segmented ECal is an integral part of the overall detector particle reconstruction and tracking (charged and neutrals)

Segmentation requirement

- In general, we wish to resolve individual photons in jets, tau decays, etc.
- The resolving power depends on Moliere radius and segmentation.
- We want segmentation significantly smaller than R_m

Two EM-shower separability in LEP data with the OPAL Si-W LumCal (David

$$f_E \simeq \frac{R_{cal}}{\sqrt{R_M^2 + (4d_{pad})^2}}$$

Silicon detector layout and segmentation

- Silicon is easily segmented
- KPiX readout chip is designed for 12 mm² pixels (1024 pixels for 6 inch wafer)
- Cost nearly independent of seg.
- Limit on seg. from chip power (≈2 mm²)

EM Energy Resolution

- Requirement for jet energy resolution in PFAs is modest for EM: ≤ 0.20/sqrt(E)
- There is no known strong physics argument for excellent EM energy resolution.
 - ⇒ Our current design provides moderate resolution: 0.17/sqrt(E)

However, it is useful to know how to "dial in" different resolutions, if needed.

Simulation Results

 For a simple W-Si sampling calorimeter, the energy resolution is given by:

$$\frac{\sigma}{E} \square \left[11.5 \left(\frac{d_W}{2.5mm} \right) - 1.8 \left(\frac{d_{Si}}{300\mu m} \right) + 8 \right] \%$$

- Doubling silicon thickness to 600µm would reduce resolution by 1.8%
- Decreasing tungsten thickness by 5% would reduce resolution by 1.4%
- Would like to see some of this space explored in testbeam:
 - Ideally with wafers of different thicknesses.
 - Could also use thick silicon and vary effective sensitive thickness (depletion depth) with bias voltage (cf. SICAPO).

Critical parameter for R_M is the gap between layers

Config.	Radiation length	Molière Radius
100% W 92.5% W +1mm gap +1mmCu Assumes 2.5n sorber plates	3.5mm 3.9mm 5.5mm 6.4mm nm thick tu	9mm 10mm 14mm 17mm ngsten ab-

US Si-W readout gap schematic cross section

Conceptual Schematic - Not to any scale!!!

KPiX Cell 1 of 1024

64-channel prototypes:

- v1 delivered March 2006
- v4 delivered Jan 16, 2007

It's a complicated beast – may need a v5 before going to the full 1024-channel chip?

Dynamic Range

KPiX-2 prototype on the test bench

Saturation Simulation

EcalBarrHits raw calorimeter cell energy full range

Simulation Results

• Saturation, even for highest energy electromagnetic showers (Bhabhas at a 1 TeV machine), is not a problem with the default design of 3.5 x 3.5 mm² cells read out using the KPiX chip.

Power Pulsing

Switch off KPiX analog front-end power between bunch trains (1% duty cycle)

- ⇒ Average power of 18 mW per channel
- ⇒ passive-only cooling should be OK

prototype Si detector studies

Response of detectors to Cosmics
(Single 5mm pixel)
Simulate LC electronics
(noise somewhat better)

Errors do not include \sim 10% calibration uncertainty (no source calibration)

v2 Si detector – for full-depth test module

- 6 inch wafer
- 1024 12 mm² pixels

Allows for topside bias

Vertices removed for spacers

Trace layout minimizes C_{max} Uses thinner traces near

KPiX

Low resistance power and ground connections

ready to go except for funding

R&D Milestones

- I. Connect (bump bond) prototype KPiX to prototype detector with associated readout cables, etc
 - Would benefit from test beam (SLAC?) 2007
 - A "technical" test
- II. Fabricate a full-depth ECal module with detectors and KPiX-1024 readout * functionally ≈equivalent to the real detector
 - Determine EM response in test beam 2008
 - Ideally a clean 1-30 GeV electron beam (SLAC?)
- III. Test with an HCal module in hadron test beam (FNAL?) 2008-?
 - Test/calibrate the hadron shower simulations; measure response
- IV. Pre-assembly tests of actual ECal modules in beam >2010

Summary

- The R&D leading to an "ILC-ready" Si-W ECal technology is progressing well.
 - There are no show-stoppers for meeting the demanding physics and technical requirements.
- This effort depends crucially on highly integrated readout electronics (KPiX)
- This Si-W R&D should result in full-depth modules which will require test beam evaluation
 - Our Si-W module (30 layers x 16cm x 16cm) 2008*
- These <u>highly segmented</u>, <u>analog</u> devices should provide an interesting test for simulation modeling of (early developing) hadron showers.