Development of fine strip scintillator with extrusion technique

SungHyun Chang, DongHee Kim, Jun Suhk Suh, Youngdo Oh, Daejung Kong, Jieun Kim, Yuchul Yang, Adil Khan, Ajmal muhamad, Mian Shabeer Ahmad

> Hadron Collider Physics Lab. Kyungpook National University, Korea

Motivation

- Concept of strip calorimeter
 - Sampling calorimeter with scintillator and W for ECAL
 - Realize fine granularity (effective segmentation ~1cm x 1cm) for PFA with strip structure
 - Huge number of readout channels for a ILC detector ~10M channels for ECAL
 - Readout by MPPC

Basic Configuration

• Prototype for EM Calorimeter

One Layer: Tungsten: 90mm x 90mm x 3.5mm

Scintillator: 10mm(width) x 45mm(length) x 3mm(thickness)

x 18 strips

Total: 26 Layers ($\sim 18X_0$)

Fine strip scintillator required!

Plastic Scintillator

• Component : **Polystyrene** pellets

+ Dopants(primary & secondary)

- Dopants
 - Primary dopants (blue emitting)
 - **PPO**(2,5-biphenyloxazole) 1.3 % (by weight) concentration
 - Secondary dopants (green emitting)
 - **POPOP**(1,4-bis(5-Phenyloxazole-2-yl)benzene), 0.1 % (by weight) concentration
- Production: Extrusion method
 - Extrusion is easy to make numerous type of scintillator
 - Lower cost than casting method

9th ACFA

Extrusion Process

Very early R&D results

- First polystyrene bar (MINOS) was produced, 40mm(width) x 10mm(thickness)
 - -> The Mechanical process has been established

- Light Yield measurement for our tiles and reference
 - -> the best samples show $(93\pm8)\%$ light yield of the reference sample

Ready to produce fine strip scintillator from previous results

Produced fine scintillator strips

Specification for test

• Readout PMT : H6568 MAPMT (16 channels) HV = -800V, QE = ~13%(~500nm)

- Beta-ray source: 90Sr (with collimator)
- WLS fiber : Kuraray Y-11
- Pico Ammeter : Keithly 485
- QDC: CAEN v792 (32ch, 0~400pC, 12 bit resolution.)
- PCI interface between VME and PC

Attenuation Length measurements

Light Yield along position for each strips

Light Yield Uniformity for all strips

Position dependence along the strip types

Measurement of p.e. PMT

Measurement of absolute Light Yield

of photon from fiber =
$$\frac{\text{Pulse height (ADC counts)}}{13.2 \text{ (ADC count / 1pe) * Q.E.}}$$
 = ~ 30 photons

06 FEB 2007 9th ACFA

Light Yield Comparison

Sample size: 10mm x 50mm x 3mm

Light Yield Comparison

Sample size: 10mm x 50mm x 3mm

Mega strip concept

- 5 strips together
- All with TiO₂ as reflector
- Each cell optically isolated
- It is under development

9th ACFA

Summary

- Fine strip has been mechanically established.
- Enough light yield (~30 photons) KNU sample (10mm x 50mm x 3mm).
- Good uniformity can be handled by quality controlled.
- Under development of mega strips.