

What's RDR

K. Yokoya KEK For RDR Management Board

ILC Milestones

- 2004 Aug. ICFA Decision of SC Technology (ICHEP at Beijing)
- 2005 Aug. Formation of GDE (Snowmass Workshop)
- 2005 Dec. BCD (Baseline Configulation Document)
 completed (Frascati Workshop)
- 2007 Feb. Draft of RDR (Reference Design Report)
 with Cost to be open to public (Beijing GDE Workshop)
 We came to this point today,
 Then,
- EDR (Engineering Design Report), Site Selection, Approval, Construction...

GDE Structure

RDR Management Board

- Consists of GDE Director, 3 cost engineers, 3 accelerator design leaders and 1 integration scientist (plus 3 Regional Directors)
- Jobs
 - Coordinate design and costing work for RDR:
 i.e., making schedule, initiate design changes,
 organize review meetings, giving inputs to the
 editor team, etc.
- Report to the EC
- Every week teleconference, every month face-to-face meeting
- Ends its role when RDR is finalized

iii Change Control Board

- Consists of 9 people for 3 regions (Asia, Americas, Europe)
- Jobs: control the design changes written in the BCD (Baseline Configuration Document)
- Receive CCR (Change Control Request)
- Initiate discussion among all GDE members and WWS people
- Decide small changes by itself
- Pass recommendation to EC for large changes ($> \sim 100M$ \$)

Steps in the Last 1 Year

- Bangalore GDE Meeting Mar.9-14
 - Design temporarily frozen
 - Established costing methodology
 - Cost estimation started
 - ILCSC-MAC1 Apr. @FNAL
- Vancouver GDE Meeting Jul.19-22
 - 1st stage cost sum
 - Identified cost driver
 - Cost reduction work started (target: 30%)
 Restart of changing design
 - ILCSC-MAC2 Sep.@KEK
- Valencia GDE Meeting Nov.6-10
 - 2nd stage sum
 - Internal review Dec. @SLAC)
 - ILCSC-MAC3 Jan. @Daresbury)

Design Changes Since Vancouver

- 2IP (2mard+20mrad)
 → 2IP (14mrad+14mrad)
 → 1IP (14mrad + push-pull)
- 3DRs (1e-, 2e+), 2 tunnels
 → 2DR (1e-,1e+), 2 tunnels
 → 2DR (1e-,1e+), 1 tunnel

- Central injector complex
- Reduce number of shafts and sizes of caverns
- And numerous small ones
 - Larger RF unit (reduce power sources)
 - Muon wall $9m+18m \rightarrow 5m$
 - Reduce positron target redundancy
 - Reduce RF unit overhead
 - Surface detector assembly
 - Tunnel diameter 5m → 4.5m

What's RDR

- Conceptual design
- With first-stage cost estimation
- Engineering details not yet contained

But what is published today is not RDR but Draft of RDR

- Not yet the final official version
- There are still many numerical inconsistencies
- There can be small changes in the next couple of months.
- But their cost impact will not be large.

Table of Contents

- Introduction
- Accelerator Design
 - Beam parameters
 - Electron source
 - Positron source
 - Damping rings
 - Ring to main linac
 - Main linacs
 - Beam delivery system
 - Accelerator physics
 - Availability, etc
- Technical Systems
 - Magnets
 - Vacuum

- Modulators
- Klystrons
- RF distribution
- Cavities
- Cryomodules
- Cryogenics system
- Low Level RF
- Instrumentation
- Dumps, collimators
- Control system
- Conventional facilities and siting
- Sample sites
- Cost and schedule

How Does ILC Look Like Now?

1st Stage: 500 GeV

Parameter Principle

- Define `Parameter Plane' instead of a single parameter set.
- We often encounter problems, unexpected or underestimated, in actual accelerators.
- Better to prepare for possible parameter changes during operation for machine flexibility.
- Thus, the several, representative parameter sets on the parameter plane are defined.
- They give essentially the same (paper) luminosity.
- Subsystems should be designed so as to satisfy all the sets at least in the design stage

Basic Global Parameters

Max. Center-of-mass energy	500	GeV
Peek Luminosity	~2x10 ³⁴	1/cm ² s
Beam Current	9.0	mA
Repetition rate	5	Hz
Average accelerating gradient	31.5	MV/m
Beam pulse length	0.95	ms
Total Site Length	31	km
Total AC Power Consumption	~230	MW

Beam Parameters for 500GeV cms

	Nominal	Low Q	Large Y	Low P	
Number of Particles	2	1	2	2	1010
Number of bunches	2625	5120	2625	1320	
Bunch interval (buckets)	369(480)	189(246)	369(480)	480(624)	ns()
Average current	9.0	9.0	9.0	6.8	mA
Norm.emittance at IP x/y	10/0.04	10/0.03	10/0.08	10(0.036)	μ m
Beta at IP x/y	20/0.4	11/0.2	11/0.6	11/0.2	mm
Rms beamsize at IP x/y	639/5.7	474/3.5	474/9.9	474/3.8	nm
Rms bunch length	300	200	500	200	μ m
Disruption param x/7	0.174/19.4	0.108/14.6	0.520/24.9	0.211/26.1	
Beamstrahlung param Y	0.048	0.050	0.038	0.097	
Energy loss by beamstr.	2.4	1.7	2.7	5.5	%
# of photons of beamstr.	1.32	0.91	1.77	1.72	
Pinch enhancement	1.71	1.48	2.18	1.64	
Geometric luminosity	1.20	1.35	0.935	1.21	10 ³⁴
Luminosity	2.0	2.0	2.0	2.0	10 ³⁴

Range of Parameters

	min	-	nomina	l -	max	
Number of particles	1	-	2	-	2	1010
Number of bunches	1320	-	2625	-	5120	
Linac bunch interval	189	-	369	-	480	ns
DR bunch interval	3.08	-	6.15	-	12.3	ns
Bunch length	200	-	300	-	500	μ m
Vertical emittance	0.03	-	0.04	-	0.08	μ m
Beta at IP (x)	11	-	11	-	20	mm
Beta at IP (y)	0.2	-	0.4	-	0.6	mm

Electron Source

- Polarized gun (laser on surface) polarization >80%
- SHB
- NC TW L-band tapered (β=0.75→1) buncher
- SC linac to 5GeV

Positron Source

- Undulator scheme
 - Electron beam at 150GeV

Undulator

- Helical, superconducting
- length ~100m (~200m for polarized e+)
- K=0.92, λ =1.15cm, (B=0.86T)
- Needs `keep-alive source'
 - 10% intensity
 - Share 5GeV linac

R&D items

- Undulator fabrication (SC, pitch 1cm, 0.86T)
- Target (titanium alloy, diam.1m, 1.4cm think, rotating at 100m/s)
- Target region design

Damping Rings

- 1e- and 1e+ ring in the same tunnel
- Beam energy 5GeV
- Circumference 6.7km
- Requirements
 - Bunch population 2x10¹⁰
 - Number of bunches ~2600 (max ~5100)
 - Extracted beam
 - Norm.emittance $\varepsilon \gamma x = 8 \mu m$, $\varepsilon \gamma y = 0.02 \mu m$
 - Bunch length 9mm
 - Energy spread 0.13%

Schematic Layout

Wiggler-RF Region

Plan View

Side View

e+ RF does not overlap with e- RF

Tunnel diameter 5m

ilr

DR Remaining Issues

- Injection/extraction kickers
- Instabilities
 - Electron-cloud, Fast Ion, microwave, ...
- Dynamic aperture
- Tuning for low emittance
- 650MHz RF system

Task Force S3 has been established for DR R&D

- Defining work packages
- Available machines
 - KEK-ATF
 - CESR, HERA, KEKB

Kicker System

Must extract bunches one-by-one

- Specification
 - rise, fall time < 3ns</p>
 - rep.rate 5.5MHz
 - pulse length 1ms
 - stability < 0.1%(can be relaxed by feedforward)
- Fast kicker needed
 - A system with fast pulser and stripline developed at KEK. Unit test done.

Electron Cloud

- Secondary electrons attracted by positron beam causes an instability
- Max of SEY (Secondary Electron Yield) should be < 1.1
- Possible cures
 - Coating with NEG
 - Solenoids in free field region
 - Grooves on the chamber wall
 - Clearing electrode

Fast Ion Instability

- lons created from ionization by electrons are attracted by electrons and cause instability
- Cures
 - Low vacuum pressure ~1nTor
 - Bunch-by-bunch feedback system
 - Gaps between bunch trains

RTML (Ring To Main Linac)

- ~14 km long transport
- Turn-around
- Spin Rotator
- Bunch compressor (2 stages)
 9mm→300µm (nominal param)
 9mm →200µm possible (Low Q param)
- Diagnostics and collimators

Main Linac

- Length ~11km x 2 (Average gradient 31.5MV/m)
- 2 tunnels (diameter 4.5m)

Linac Unit

- Bouncer type modulator
- Multiboom Wyotron (10NM) 1 Gmo)

RF power system should accommodate 35MV/m operation.

Cavities

- Baseline Choice
 - Accept only those with
 >35MV/m Qo>8e9 in power ical test
 - Average gradient for 500 operation 31.5MV/m
 - TESLA type
 - Electro-polishing
- Yield for >35MV/m is still too low

Linac Gradient (MV/m)

Statistics of 17 ZANON cavities

Alternative

- LL-type cavity
 - Lower max.B field at same Acc.gradient
 - Potentially higher gradient > 40MV/m
 - Under development at KEK
 - Single-cell test successful (max. over 50MV/m)
 - But 9-cell cavities are still poor (max. 29MV/m)

 Nb material: Single crystal, Large grain

S0 Program

- Task Force S0 created a report for the R&D program to establish 35 MV/m (vert.test)
 - Tight-loop process repeated surface treatment with small number of cavities including exchange of cavities among Asia-US-Europe in 2007
 - Production-like process
 many cavities with the same recipe
- Time line
 - decide cavity type by ~mid 2008
 - Establish high yield by ~mid 2009
- Task Force S1 for establishing 31.5MV/m (average gradient)

Modulator

- Bouncer-type modulator
 - Design at FNAL
 - Has been working for 10 years
 - More cost-efficient design under way
- Alternative:

Marx Modulator

- Under development at SLAC
- •12kV Marx cell x 16
- •IGBT switch
- •Saving of ~180M\$
- SLAC prototype produced 70kV with 6 cells

MARX MODULATOR - MECHANICAL DETAIL

Klystron

Requirements:

- •10MW
- •1.6ms
- •life >40000hrs?

Thales

les CPI

Toshiba

- •Toshiba klystron being tested at DESY at full spec for > 700hrs.
- → Nearly established except for the life
- Horizontally mounted klystron needed for small tunnel diameter.
 (Bidding for Euro-XFEL)

BDS (Beam Delivery System)

- Single IR and push-pull detector²⁰
- Total length4.45km

BDS with single IR

Single IR with Push-Pull Detectors

- Large cost savings compared with 2 IR
 - ~200M\$ compared with 2IR with crossing angles 14+14mrad
- Push-pull detectors
 - Task force from WWS and GDE formed
 - Quick conclusion is
 - No show-stoppers
 - But need careful design and R&D works
 - 2IR should be left as an `Alternative'

Layout of BDS+DR

Value Distribution

What from now?

- Finalize RDR
 - Check inconsistencies (still many!)
 - Possible final small changes
 - ILCSC-MAC review in ~April
 - Final form in summer
- Organization of GDE for the next step
 - Next milestone EDR (Engineering Design Report) around 2009.
 - Coordination of R&D essential
 - Engineering stage
 - To be decided in the next coule pf months

Finally

- RDR Draft is going to be published
- This is the first major milestone reached by international collaboration
- First estimation of the cost will be open to public
- There still remains many R&D items, including, e.g., the establishment of the accelerating gradient 35/31.5 MV/m.
- GDE is going to coordinate the R&D
- The nest step is
 - To finalize the RDR
 - And to start the work for EDR