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Tracking Performance of an All-Silicon
Tracker

Thanks to Michael Young (UCSC Master’s student),
Eric Wallace, Lor1 Stevens, and Tyler Rice (UCSC
undergraduates)

Goals:

* Verify tracking efficiency for all-silicon tracking

* Verify track parameter resolution




TRACKING CODE

Available track reconstruction/fitting is VXDBasedReco, due
to Nick Sinev (Oregon).

= Start with segment from VXD
= Attach tracker hits (at least one hit needed to reduce
bckgd)

Can be run with no hit smearing, gaussian smearing, or
realistic CCD hit smearing (realistic ustrip smearing still
under development).

NOTE: VXDBasedReco not yet available in new (LCIO)
framework; these results are >1 year old!

Also: we use Wolfgang Walkowiak's TrackEfficiencyDriver
for the core of the tracking efficiency calculation.




Choose qqgbar events at E_,= 500 GeV (dense jet cores)
Choose events/tracks that should be easily
reconstructed (tracks curl up below p = 1 GeV):

Event Selection

= |c0S04,ust| < 0.5
= Thrust Mag > 0.94

Track Selection

= |cos6;, .| < 0.5
=p, >56eV/c




SOME PRELIMINARIES

. Gaussian variable related to momentum resolution is

curvature o, inversely related to p, and radius of
curvature R according to

o=1/R=0.003*B(T) * (1/p,)

. Define a as angle between track and jet core,
where jet core angle is taken to be the thrust axis.

. All fitting studies done without beam constraint




EFFICIENCIESFOR QQBAR EVENTS

5 Layer: Efficiency vs Abs(z) G Layer: Efficiency vs Abs(a)

1F i 1 . I I

il el 1| 1| [Doesr
= ﬂ R A - ]i [7 look that
N | ki spectacular;
2 I o Ul .

1 _ | what might

o) ! o] al be going on

: E:ES:I 311533 : g?ﬂ:l :nli: I here?

Msan 0.0961 E " | Mean (0BG 3

i Maany 0.9434 : D'E__ WMaany kY.

L | AMs paies | | L | RMS a1es | |

- | Ansy 0.231 - | NSy 1.2314
D.EIII|III|III|III|III|III|III|III D_S-IlllllllllI|III|III|III|I I|III

0 02 04 05 048 1 12 14 18 0 02 04 08 OB 1 12 14 14

rad rad




Of course! The requirement of a VXD stub means that

you mis any hlpo that nﬂolnates bevnnd r ~ 3cm. This
0
1s about 5% of all tracks.
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With VXDBasedReco, we won’t see a difference
between 5 and 8 layer tracking.




So — what 1s the efficiency for tracks that originate
within the beampipe?

Efficiency vs. Abs(a) rOrgMax: 1
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Efficiency Versus Transverse Momentum
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TRACK PARAMETER PERFORMANCE

1. Compare width of Gaussian fit to residuals with two
different estimates:

Error from square root of appropriate diagonal
error matrix element

Error from Billior calculation (LCDTRK program)

2. Only tracks with all DOF (5 VTX and 5 CT layers)
are considered.

3. Only gaussian smearing is used, since this is what is
assumed for the two estimators.

Qgbar sample extends out to ~100 GeV; use p*u- sample
to get higher energy (200-250 GeV) bin.




CURVATURE ERROR vs. CURVATURE
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RESULTSFOR pp (LOWEST ® BIN)

Residuals (Gaussian smear): oM = 3.40x10’
Error Matrix: om = 3.12x107
LCDTRK: 0w = 3.26x107

Actual momentum resolution is about 9% worse than
LCDTRK expectation
Residuals (realistic CCD): om = 3.29x107

Apparently, "realistic” CCD resolution is better than
assumed value of bum




RECONSTRUCTING NON-PROMPT TRACKS

 Snowmass ‘05: Tim Nelson wrote axial-only
algorithm to reconstruct tracks in absence of
Vertex Detector

e UCSC 1dea: use this to “clean up” after vertex-
stub based reconstruction (VXDBasedReco)

* About 5% of tracks originate beyond the VXD
inner layers

* For now: study Z-pole qq events




Cheater

VXDBasedReco had not yet been ported to
org.lcsim framework, so...

Wrote “cheater” to emulate perfectly efficient
VXDBasedReco; assume anything that can be

found by VXDBasedReco 1s found and the hits
flagged as used

Loops over TkrBarrHits and MCParticles, finds
particles with rOrigin < 20mm and hits from those
particles, removes them from collections

rOrigin defined as sqrt(particle.getOriginX ()2 +
particle.getOriginY ()"2)




What’s Left after “Cheating”? (258 events, no backgrounds)
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Hit Count Entries : 445
1 Mean :369.71
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AxialBarrel TrackFinder (Tim
Nelson, SLAC)

Loops over all hits in each layer, from the outside
in, and finds 3 *“seed” hits, one per layer

Performs CircleFit (alogrithm provided by
Norman Graf) to seed hits

If successtul, looks for hits on the remaining

layers that can be added to seed fit, refitting after
each hit added.

If at least 4 hits on track, and Chi"2 of fit
reasonable, creates track object and adds to
collection

Only two (half-barrel) segments in z for now




AxialBarrelTrackFinder Performance
Define “findable” particle as

« P.>0.75

« Radius of origin <400 mm (require four layers)
* Path Length > 500 mm

* |cosO| <0.8

ntries : 137
ean:2.8175
ms: 1.0058

a=m

per event

il Number of
= “ﬁndable”
“l I particles




Particle 1s “found” if 1t 1s associated with a track
with four or more hits, with at most one hits coming

from a different track. All non-associated tracks with
p~0.75 and DCA < 100mm are labeled “fake”.

Particles Fakes
Not Found 175 (46.4%)  --------
Found 4 Hits 88  (23.3%) 270
Found 5 Hits 114 (30.2%) 1

Total 377 (100%)




Particles can be found more than once... (but there’s
only one entry per particle in the previous table)
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We have a few 1deas as to why these are being missed,
and are looking into it.




CONCLUSIONS

Extending vertex detector stubs is very efficient for
tracks above p; = 0.5 GeV/c and that originate within
the second layer of the VXD

Most of the ~5% of tracks that originate outside the
second layer of the VXD originate within the second
layer of the central tracker, and may be findable.

We find them with about 30% efficiency now, but

- N N ¥ ,

believe we can do better.

How much will Z segmentation help? How about tracking
calorimeter stubs back in? (Kansas State's GARFIELD
package does this with ~30% efficiency)




RANDOM BACK-UP
SLIDES




Slepton Mass Reconstruction and Detector Resolution
* [s the information on Slepton masses in the forward
region?
* Can we detect 1t above backgrounds?
 Are our detectors up to the task?

Track Reconstruction with an All-Silicon Detector
* Does the current software reconstruct tracks
efficiently in dense jet environments?
* [s the momentum resolution as good as expected
from Billior calculations? Why or why not?




Work accomplished by exploiting UCSC’s senior thesis
requirement. ..




M otivation

To explore the effects of limited detector resolution on
our ability to measure SUSY parameters in the forward
(|cos(0)| > .8) region.
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R Electron energy distribution
SHNIH [:H"] with beam/bremm/ISR

©COD-———— (16%). No detector effects
o or beam energy spread.

Energy Distribution
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Energy GeV

e sample electron energy distribution M ocyron = 143.112
(SPS1A)



hted towards higher energy at high

1S welg

The spectrum

Icos(0)|, so there’s more information in the forward region

than one might expect.
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Previous work:
Can one find the selectron signal for
Icos(0)>0.87

Dominant Backgrounds:

Explored eeee backgrounds in central region
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‘STANDARD’ CUTS

 Fiducial Cut: Exactly one final-state positron and one final-state electron pair
in |cos(0)| region of interest, each with a transverse momentum of at least 5GeV.
Otherwise the event is discarded.

« Tagging Cut: No observable electron or positron in low-angle "tagging’
calorimetry (with coverage of 20mrad < 0 < 110mrad)

* Transverse Momentum (TM) Cut: Cuts events where vector sum of
transverse momentum for e*e” pair is less than 2 * 250GeV * sin (20 mrads)

‘NEW’ CUTS

* Photon Cut: TM cut eliminates four-electron background except for radiative
events. Remove remaining radiative events by looking for radiated photon; 1.e., if
there is a photon in the tagging region with energy of 20GeV or more.

« HP Cut: Removes low-mass, t-channel-dominated eevv backgrounds while
preserving high-mass SUSY signal




Standard Model Backgrounds

After ‘photon cut’, which eliminates the four-electron back-
ground, the dominant background 1s eevv. Manipulation of the
beam polarization, combined with application of the ‘HP Cut’
reduces background to minimal levels, even in forward region.

=» Ignore backgrounds in detector resolution studies.
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Fitting the Endpoints for the Selectron Mass

For now, we have done one-dimensional fits (assume " mass known)

Vary SUSY parameters minutely around SPS1A point so that
selectron mass changes while %" mass remains fixed.
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Generate ‘infinite’ (~1000 fb-!) at each point to compare to 115 fb-!

data sample; minimize ¥? vs. M ..., t0 find best-fit selectron mass.

(W*ni—mu’W)z

CHI-Squared =
(ni *wl+m, )

Repeat for 120 independent data samples; statistics from spread
around mean rather than directly from ¥? contour.




Selectron Mass Study Scenarios

12 scenarios were considered:

Detector Resolution
Perfect (no smearing) and SDMAROI1

Detector Coverage

IcosB| < 0.8 and |cosB| < 0.994

Beam Spread
0%, 0.16%, and 1.0%




First, just look in the central region (JcosB| < 0.8)
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Now, include the full region (Jcosf| < 0.994)
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[s 1t the point resolution, or the material?
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Tentative Conclusions to Draw

1. Due to the stiffening of the spectrum in the forward
region, there 1s a surprising amount of information there.
For this scenario, most of the infor mation on slepton
massesliesin theforward (|cose| > 0.8) region.

2. For cold-technology beamspread (0.14%), SDMARO1
resolution has not reached the point of diminishing
returns. The physics seems to be limited by detector
resolution. Point resolution 1s the dominant 1ssue.

3. Any gains that can be made in p, resolution in the
forward region would reap large rewards for light
sleptons.




