

SCIPP R&D on Time-Over-Threshold Electronics and Long-Ladder Readout

Beijing Linear Collider Workshop Beijing, China

February 4-8 2007

Bruce Schumm

The SCIPP/UCSC SiLC/SiD GROUP (Harwdare R&D Participants)

Faculty/Senior

Post-Docs

Undergrads

Vitaliy Fadeyev
Alex Grillo
Bruce Schumm

Jurgen Kroseberg Lei Wang

Greg Horn Luke Kelley Patrick Au

Lead Engineer: Ned Spencer

Technical Staff: Max Wilder, Forest Martinez-McKinney

All participants are mostly working on other things (BaBar, ATLAS, biophysics...)

Students are undergraduates from physics and engineering

FOCUS AND MILESTONES

Goal: To develop readout generically suited to any ILC application (long or short strips, central or forward layers)

Current work focused on long ladders (more challenging!):

- Front-end electronics for long (>1 meter) ladders
- · Exploration of sensor requirements for long ladders
- Demonstration (test-beam) of < 10 μ m resolution mid-2008

After long-ladder proof-of-principle, will re-optimize (modest changes) for short-strip, fast-rate application

We also hope to play an increasing role in overall system development (grounding/shielding, data transmission, module design and testing) as we have on ATLAS and GLAST

BRIEF SUMMARY OF STATUS

Testing of 8-channel (LSTFE-1) prototype fairly advanced:

- Reproducible operation (4 operating boards)
- Most features working, with needed refinements understood
- ·A number of "subtleties" (e.g. channel matching, environmental sensitivity) under control
- Starting to make progress on fundamental issues confronting long-ladder/high-resolution limit.

Design of 128-channel prototype (LSTFE-2) well underway (April submission)

Now for the details...

Pulse Development Simulation

Christian Flacco & Michael Young (Grads); John Mikelich (Undergrad)

Long Shaping-Time Limit: strip sees signal if and only if hole is collected onto strip (no electrostatic coupling to neighboring strips)

Include: Landau deposition (SSSimSide; Gerry Lynch LBNL), variable geometry, Lorentz angle, carrier diffusion, electronic noise and digitization effects

Simulation Result: S/N for 167 cm Ladder (capacitive noise only)

Simulation suggests that long-ladder operation is feasible

Electronics Simulation: Resolution

Detector Noise:

Capacitive contribution; from SPICE simulation normalized to bench tests with GLAST electronics

Analog Measurement:

Provided by time-overthreshold; lookup table provides conversions back into analog pulse height (as for actual data)

Detector Resolution (units of 10µm)

Lower (read) threshold in fraction of min-i (High threshold is at 0.29 times min-i)

DIGITAL ARCHITECTURE: FPGA DEVELOPMENT

Digital logic under development on FPGA (Wang, Kroseberg), will be included on front-end ASIC after performance verified on test bench and in test beam.

Proposed LSTFE Back-End Architecture Low Comparator Leading-Edge-Enable Domain L, 8:1 Multi- H_{i} plexing trailing transitions) L_{i+1} $(\tau_{\rm clock} =$ H_{i+1} 50 ns) L_{i+2} H_{i+2} L_{i+3} H_{i+3} L_{i+4} H_{i+4} and L_{i+5} H_{i+5} **Event** L_{i+6} Time H_{i+6} Clock Period $\tau = 400$ nsec

Note on LSTFE Digital Architecture

Use of time-over-threshold (vs. analog-to-digital conversion) permits real-time storage of pulse-height information.

- → No concern about buffering
- → LSTFE system can operate in arbitrarily high-rate environment; is ideal for (short ladder) forward tracking systems as well as long-ladder central tracking applications.

DIGITAL ARCHITECTURE SIMULATION

ModelSim package permits realistic simulation of FPGA code (signal propagation not yet simulated)

Simulate detector background (innermost SiD layer) and noise rates for 500 GeV running, as a function of readout threshold.

Per 128 channel chip ~ 7 kbit per spill → 35 kbit/second

For entire SiD tracker ~ 0.5-5 GHz data rate, depending on ladder length (x100 data rate suppression)

INITIAL RESULTS

LSTFE chip mounted on readout board

FPGA-based control and data-acquisition system

Note About LSTFE Shaping Time

Original target: τ_{shape} = 3 µsec, with some controlled variability ("ISHAPR")

→ Appropriate for long (2m) ladders

In actuality, $\tau_{shape} \sim 1.5~\mu sec;$ tests are done at 1.2 μsec , closer to optimum for SLAC shortladder approach

Difference between target and actual shaping time understood in terms of simulation (full layout)

LSTFE-2 will have 3 µsec shaping time

Comparator S Curves

Vary threshold for given input charge

Read out system with FPG-based DAQ

Get

1-erf(threshold)

with 50% point giving response, and width giving noise

Hi/Lo comparators function independently

EQUIVALENT CAPACITANCE STUDY

Noise vs. Capacitance (at τ_{shape} = 1.2 μs)

Measured dependence is roughly (noise in equivalent electrons)

$$\sigma_{\text{noise}} = 375 + 8.9 * C$$

with C in pF.

Experience at 0.5 μm had suggested that model noise parameters needed to be boosted by 20% or so; these results suggest 0.25 μm model parameters are accurate

→ Noise performance somewhat better than anticipated.

Channel-to-Channel Matching

Occupancy threshold of 1.2 fC (1875 e^-) \rightarrow 180 mV

- ± 2 mV (20 e⁻) from gain variation
- ± 10 mV (100 e⁻) from offset variation

Power Cycling

Idea: Latch operating bias points and isolate chip from outside world.

- Per-channel power consumption reduces from ~1 mW to ~1 μ W.
- Restoration to operating point should take ~ 1 msec.

Current status:

- Internal leakage (protection diodes + ?) degrades latched operating point
- Restoration takes ~40 msec (x5 power savings)
- Injection of small current (< 1 nA) to counter leakage allows for 1 msec restoration.

Future (LSTFE-2)

Low-current feedback will maintain bias points;
 solution already incorporated in LSTFE-2 design

Power Cycling with Small Injected Current

Solution in hand to maintain bias levels in "off" state with low-power feedback; will eliminate need for external trickle current

LONG LADDER CONSTRUCTION

LONG LADDER EXPERIENCE

A current focus of SCIPP activity

Using GLAST "cut-off" (8 channel) sensors; 237 μ m pitch with 65 μ m strip width

Have now studied modules of varying length, between 9cm and 72cm. [2/1/07: Now have up to 143 cm...]

Measure inputs to estimate noise sources other than detector capacitance:

· Leakage current 1.0 nA/cm

• Strip resistance $3.1 \Omega/cm$

• Bias resistance $35 M\Omega$ per sensor

All of these should be considered in module design!

Strip resistance for fine pitch could be an issue \rightarrow are starting careful study and considering options \rightarrow feedback to detector/module design.

Measured Noise vs. Sum of Estimated Contributions

Measured noise

Sum of estimates

Projected Johnson noise for 20 µm strip (not part of estimate)

Estimated Johnson noise for actual 65 µm strip (part of estimate)

TIME-OVER-THRESHOLD READOUT SUMMARY

The LSTFE readout system is:

- Universally applicable (long strips, short strips, central, forward, SiD, LDC, GLD, 4th...)
- · Rigorously optimized for ILC tracking
- · Relative simple (reliability, yield)
- In a relatively advanced stage of development
- Is now being used as an instrument to understand fundamental principles of long ladder operation, particularly for narrow strips (CDF Layer00 sensors available, being qualified)

RANDOM BACK-UP SLIDES

Silicon Microstrip Readout R&D

Initial Motivation

Exploit long shaping time (low noise) and power cycling to:

- Remove electronics and cabling from active area (long ladders)
- Eliminate need for active cooling

The Gossamer Tracker

Ideas:

- Low noise readout → Long ladders → substantially limit electronics readout and support
- Thin inner detector layers
- Exploit duty cycle → eliminate need for active cooling

Competitive with gaseous tracking over full range of momentum (also: forward region)

Alternative: shorter ladders, but better point resolution

Alternative: shorter ladders, but better point resolution

The LSTFE approach would be well suited to use in short-strip applications, and would offer several potential advantages relative to other approaches

- Optimized for LC tracking (less complex)
- More efficient data flow
- No need for buffering

Would require development of 2000 channel chip w/ bump bonding (should be solved by KPiX development)

LSTFE-2 DESIGN

LSTFE-1 gain rolls off at ~10 mip; are instituting log-amp design (50 mip dynamic range)

Power cycling sol'n that cancels (on-chip) leakage currents Improved environmental isolation

Additional amplification stage (noise, shaping time, matching Improved control of return-to-baseline for < 4 mip signals Multi-channel (64? 128? 256?) w/ 8:1 multiplexing of output

Must still establish pad geometry (sensor choice!)