SCIPP R&D on Time-Over-Threshold Electronics and Long-Ladder Readout Beijing Linear Collider Workshop Beijing, China **February 4-8 2007** **Bruce Schumm** ## The SCIPP/UCSC SiLC/SiD GROUP (Harwdare R&D Participants) Faculty/Senior Post-Docs **Undergrads** Vitaliy Fadeyev Alex Grillo Bruce Schumm Jurgen Kroseberg Lei Wang Greg Horn Luke Kelley Patrick Au **Lead Engineer: Ned Spencer** **Technical Staff:** Max Wilder, Forest Martinez-McKinney All participants are mostly working on other things (BaBar, ATLAS, biophysics...) Students are undergraduates from physics and engineering ## FOCUS AND MILESTONES Goal: To develop readout generically suited to any ILC application (long or short strips, central or forward layers) Current work focused on long ladders (more challenging!): - Front-end electronics for long (>1 meter) ladders - · Exploration of sensor requirements for long ladders - Demonstration (test-beam) of < 10 μ m resolution mid-2008 After long-ladder proof-of-principle, will re-optimize (modest changes) for short-strip, fast-rate application We also hope to play an increasing role in overall system development (grounding/shielding, data transmission, module design and testing) as we have on ATLAS and GLAST ## **BRIEF SUMMARY OF STATUS** Testing of 8-channel (LSTFE-1) prototype fairly advanced: - Reproducible operation (4 operating boards) - Most features working, with needed refinements understood - ·A number of "subtleties" (e.g. channel matching, environmental sensitivity) under control - Starting to make progress on fundamental issues confronting long-ladder/high-resolution limit. Design of 128-channel prototype (LSTFE-2) well underway (April submission) Now for the details... ## Pulse Development Simulation Christian Flacco & Michael Young (Grads); John Mikelich (Undergrad) Long Shaping-Time Limit: strip sees signal if and only if hole is collected onto strip (no electrostatic coupling to neighboring strips) Include: Landau deposition (SSSimSide; Gerry Lynch LBNL), variable geometry, Lorentz angle, carrier diffusion, electronic noise and digitization effects ## Simulation Result: S/N for 167 cm Ladder (capacitive noise only) Simulation suggests that long-ladder operation is feasible ## **Electronics Simulation: Resolution** #### **Detector Noise:** Capacitive contribution; from SPICE simulation normalized to bench tests with GLAST electronics #### **Analog Measurement:** Provided by time-overthreshold; lookup table provides conversions back into analog pulse height (as for actual data) #### Detector Resolution (units of 10µm) Lower (read) threshold in fraction of min-i (High threshold is at 0.29 times min-i) ## DIGITAL ARCHITECTURE: FPGA DEVELOPMENT Digital logic under development on FPGA (Wang, Kroseberg), will be included on front-end ASIC after performance verified on test bench and in test beam. #### Proposed LSTFE Back-End Architecture Low Comparator Leading-Edge-Enable Domain L, 8:1 Multi- H_{i} plexing trailing transitions) L_{i+1} $(\tau_{\rm clock} =$ H_{i+1} 50 ns) L_{i+2} H_{i+2} L_{i+3} H_{i+3} L_{i+4} H_{i+4} and L_{i+5} H_{i+5} **Event** L_{i+6} Time H_{i+6} Clock Period $\tau = 400$ nsec ## Note on LSTFE Digital Architecture Use of time-over-threshold (vs. analog-to-digital conversion) permits real-time storage of pulse-height information. - → No concern about buffering - → LSTFE system can operate in arbitrarily high-rate environment; is ideal for (short ladder) forward tracking systems as well as long-ladder central tracking applications. ## **DIGITAL ARCHITECTURE SIMULATION** ModelSim package permits realistic simulation of FPGA code (signal propagation not yet simulated) Simulate detector background (innermost SiD layer) and noise rates for 500 GeV running, as a function of readout threshold. Per 128 channel chip ~ 7 kbit per spill → 35 kbit/second For entire SiD tracker ~ 0.5-5 GHz data rate, depending on ladder length (x100 data rate suppression) ## INITIAL RESULTS LSTFE chip mounted on readout board FPGA-based control and data-acquisition system ## Note About LSTFE Shaping Time Original target: τ_{shape} = 3 µsec, with some controlled variability ("ISHAPR") → Appropriate for long (2m) ladders In actuality, $\tau_{shape} \sim 1.5~\mu sec;$ tests are done at 1.2 μsec , closer to optimum for SLAC shortladder approach Difference between target and actual shaping time understood in terms of simulation (full layout) LSTFE-2 will have 3 µsec shaping time #### Comparator S Curves Vary threshold for given input charge Read out system with FPG-based DAQ Get 1-erf(threshold) with 50% point giving response, and width giving noise Hi/Lo comparators function independently #### **EQUIVALENT CAPACITANCE STUDY** Noise vs. Capacitance (at τ_{shape} = 1.2 μs) Measured dependence is roughly (noise in equivalent electrons) $$\sigma_{\text{noise}} = 375 + 8.9 * C$$ with C in pF. Experience at 0.5 μm had suggested that model noise parameters needed to be boosted by 20% or so; these results suggest 0.25 μm model parameters are accurate → Noise performance somewhat better than anticipated. ## Channel-to-Channel Matching Occupancy threshold of 1.2 fC (1875 e^-) \rightarrow 180 mV - ± 2 mV (20 e⁻) from gain variation - ± 10 mV (100 e⁻) from offset variation ## Power Cycling Idea: Latch operating bias points and isolate chip from outside world. - Per-channel power consumption reduces from ~1 mW to ~1 μ W. - Restoration to operating point should take ~ 1 msec. #### Current status: - Internal leakage (protection diodes + ?) degrades latched operating point - Restoration takes ~40 msec (x5 power savings) - Injection of small current (< 1 nA) to counter leakage allows for 1 msec restoration. #### Future (LSTFE-2) Low-current feedback will maintain bias points; solution already incorporated in LSTFE-2 design ## Power Cycling with Small Injected Current Solution in hand to maintain bias levels in "off" state with low-power feedback; will eliminate need for external trickle current ## LONG LADDER CONSTRUCTION ## LONG LADDER EXPERIENCE A current focus of SCIPP activity Using GLAST "cut-off" (8 channel) sensors; 237 μ m pitch with 65 μ m strip width Have now studied modules of varying length, between 9cm and 72cm. [2/1/07: Now have up to 143 cm...] Measure inputs to estimate noise sources other than detector capacitance: · Leakage current 1.0 nA/cm • Strip resistance $3.1 \Omega/cm$ • Bias resistance $35 M\Omega$ per sensor All of these should be considered in module design! Strip resistance for fine pitch could be an issue \rightarrow are starting careful study and considering options \rightarrow feedback to detector/module design. #### **Measured Noise vs. Sum of Estimated Contributions** Measured noise Sum of estimates Projected Johnson noise for 20 µm strip (not part of estimate) Estimated Johnson noise for actual 65 µm strip (part of estimate) #### TIME-OVER-THRESHOLD READOUT SUMMARY ## The LSTFE readout system is: - Universally applicable (long strips, short strips, central, forward, SiD, LDC, GLD, 4th...) - · Rigorously optimized for ILC tracking - · Relative simple (reliability, yield) - In a relatively advanced stage of development - Is now being used as an instrument to understand fundamental principles of long ladder operation, particularly for narrow strips (CDF Layer00 sensors available, being qualified) # RANDOM BACK-UP SLIDES ## Silicon Microstrip Readout R&D ### **Initial Motivation** Exploit long shaping time (low noise) and power cycling to: - Remove electronics and cabling from active area (long ladders) - Eliminate need for active cooling ## The Gossamer Tracker #### Ideas: - Low noise readout → Long ladders → substantially limit electronics readout and support - Thin inner detector layers - Exploit duty cycle → eliminate need for active cooling Competitive with gaseous tracking over full range of momentum (also: forward region) Alternative: shorter ladders, but better point resolution ## Alternative: shorter ladders, but better point resolution The LSTFE approach would be well suited to use in short-strip applications, and would offer several potential advantages relative to other approaches - Optimized for LC tracking (less complex) - More efficient data flow - No need for buffering Would require development of 2000 channel chip w/ bump bonding (should be solved by KPiX development) ## LSTFE-2 DESIGN LSTFE-1 gain rolls off at ~10 mip; are instituting log-amp design (50 mip dynamic range) Power cycling sol'n that cancels (on-chip) leakage currents Improved environmental isolation Additional amplification stage (noise, shaping time, matching Improved control of return-to-baseline for < 4 mip signals Multi-channel (64? 128? 256?) w/ 8:1 multiplexing of output Must still establish pad geometry (sensor choice!)