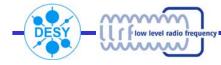

LLRF Plans for XFEL for 2006

S. Simrock, DESY

LLRF Plan XFEL - S. Simrock


- Define WBS and Assemble Teams
- Write LLRF Requirements Document
- Develop conceptual Design
- Develop many LLRF Control Algorithms (FPGA,DSP, CPU)
- Evaluate SIMCON 3.1 at VUV-FEL
- Automation of LLRF Control

LLRF Plan XFEL - S. Simrock

Milestones 2006

Operation of ACC1 with SIMCON 3.1	July 06
Operation of RF Gun with SIMCON 3.1	July 06
SIMCON 3.1 Operational at PITZ RF Gun	Mar 06
SIMCON 3.1 at FNAL	Mar 06
XFEL LLRF Requirement Document	Nov 06
Concept for Packaging (Standardisation for Crates etc.)	July 06
On-line gamma/neutron dosimetry in VUV-FEL (5x)	Mar 06
Operation of klystron 4+5 with FSM	Mar 06
On-line diagnostics LLRF at VUV-FEL	Mar 06
Transient meas. ACC1 in operation	July 06
Prototype of new downconverter with new IF scheme	Mar 06
Prototype of 8-channel downconverter with ADC, FPGA	July 06
Fiber optic reference system in operation	April 06

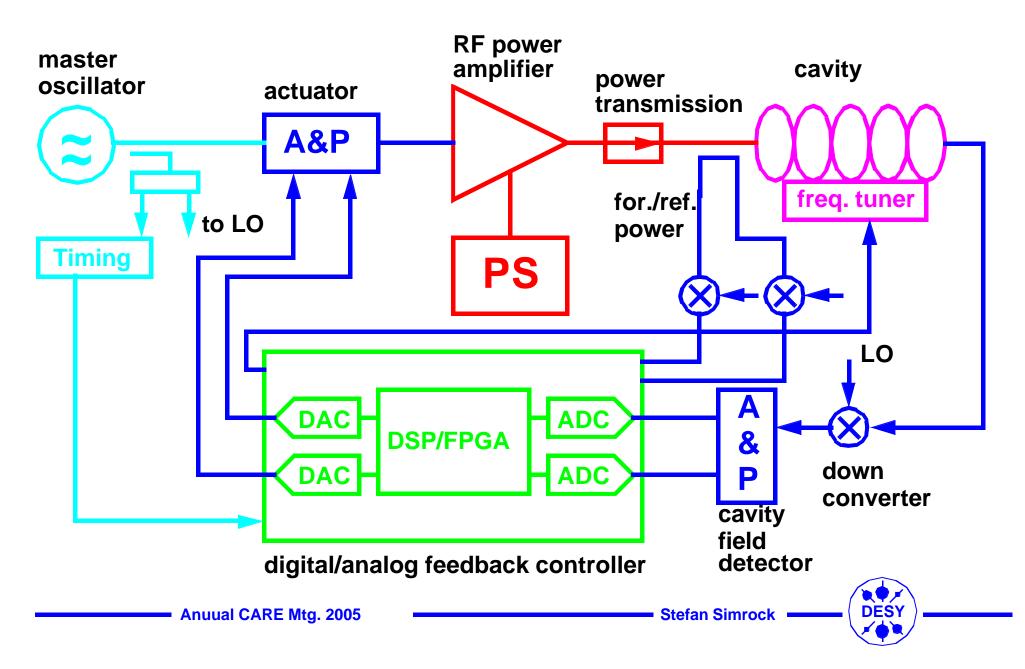


Objectives of RF Control

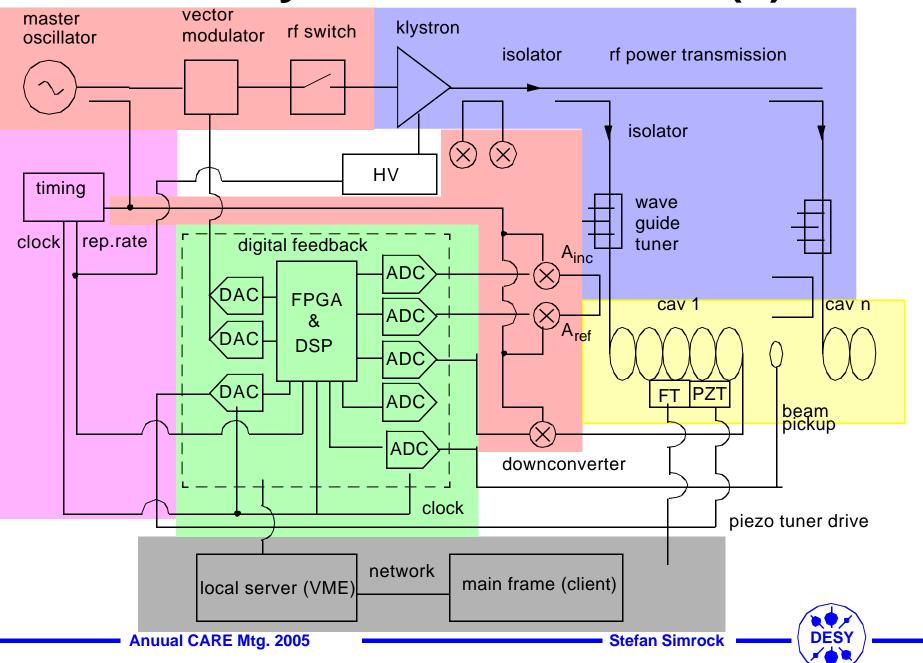
- Advance RF control technology in the areas of hardware and software to meet the requirements for the VUV-FEL, and XFEL and ILC. Focus is on
 - state-of-the-art technology, pushing the envelope of performance
 - compatibility with tunnel installation (low maintenance, radiation tolerant)
 - operability, high degree of automation for large scale systems
 - availability and reliability optimization and cost reduction

Collaboration

also worldwide participation by FNAL, KEK, IHEP, ORNL, JLAB ...

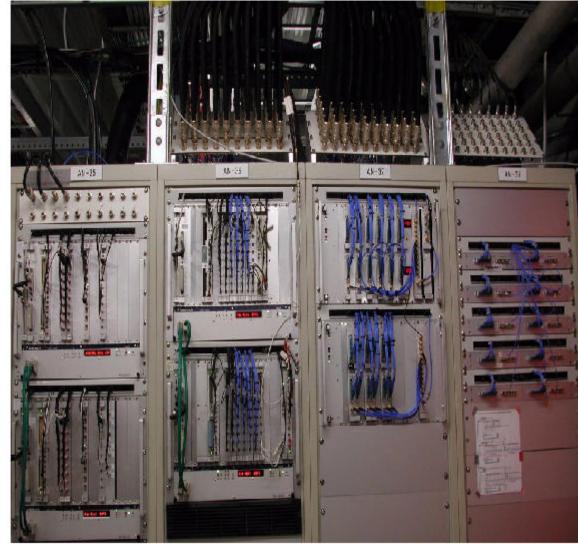


Anuual CARE Mtg. 2005


Highlights

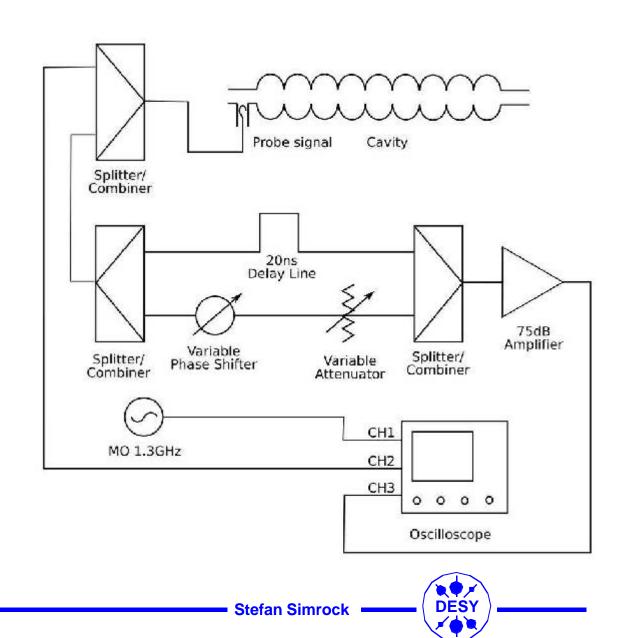
- Third Generation RF Control (WUT-ISE ...)
- Single Bunch Transient Detection (TUL-DMCS ...)
- Multichannel Downconverter (WUT-ISE ...)
- Stable M.O. and Frequency Distribution (WUT-ISE ...)
- RF Gun Control (PSI ...)
- Automation of LLRF Control (TUL-DMCS ...)
- Exception handling (DESY ...)
- Data Management Development (TUL-DMCS ...)
- Control Optimisation (DESY ...)
- Cost and Reliability (DESY ...)
- Radiation Effects on Electronics (ALL)

RF System Architecture (1)



RF System Architecture (2)

LLRF at the VUV-FEL



Anuual CARE Mtg. 2005

Single Bunch Transient Detection (1)

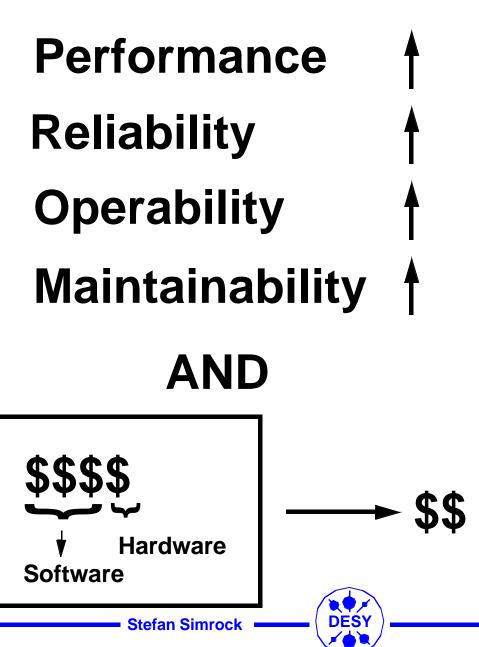
- Detection of transient of single bunch (1 nC)
 - with magnitude of about 2e-4
 - with a resolution of a few percent in amplitude and few degrees in phase.
- Conceptual idea: subtract delayed probe signal from original probe signal and amplify error
 - Transient vector is detected by fast sampling scope

Single Bunch Transient Detection (2)

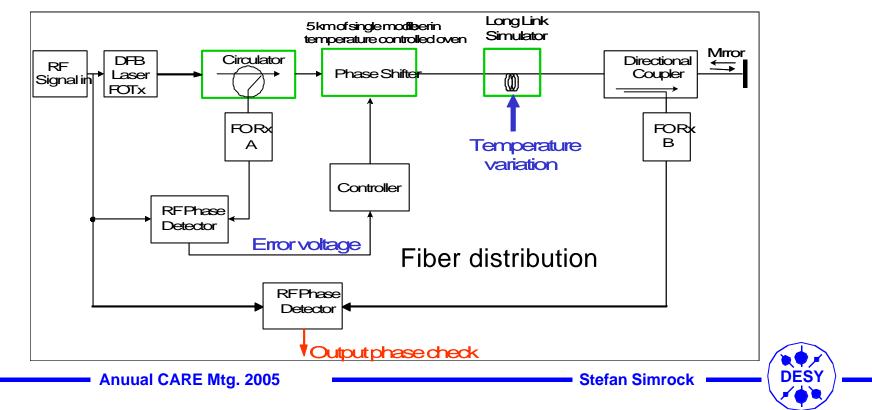
- This requires development of new hardware (microwave, analog, digital)
 - with high bandwidth and low noise

Picture of the hardware

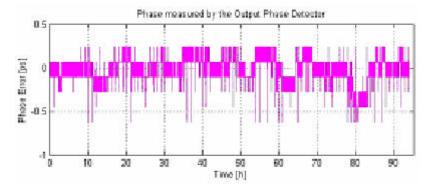
Measured data


• Demonstrated required performance close to thermal noise limit.

Beam Phase Set Point	Measured Phase	Measured Magnitude	Measured Beam Phase Error
-90,0	-90,9	4,19E-04	0,9
-45,0	-48,2	4,37E-04	3,2
0,0	1,7	3,95E-04	-1,7
45,0	41,6	4,09E-04	3,4
90,0	44,9	1,19E-04	45,1
180,0	35,6	8,92E-05	144,4


Design Optimization, Cost and Reliability

- High performance design using digital processing (FPGAs) and telecommunication components.
- Reduce cost of LLRF system by application of COTS.
- Redundant design where necessary
- Reliability studies on prototypes include EMI, thermal, and radiation effects.
- Software design using modularity, standardization, good specifications and documentation
- Built-in diagnostics for hardware and software


Highly stable frequency distribution (1)

- VUV-FEL, XFEL and ILC require a highly phase stable reference to
 - ensure that rf signals of laser, rf gun, and accelerating cavities are synchronized to better than 100 fs (short term) and 1 ps (long term)
- The proposed approach combines
 - a coaxial distribution system
 - with a fiber optic monitoring system.

Highly stable frequency distribution (2)

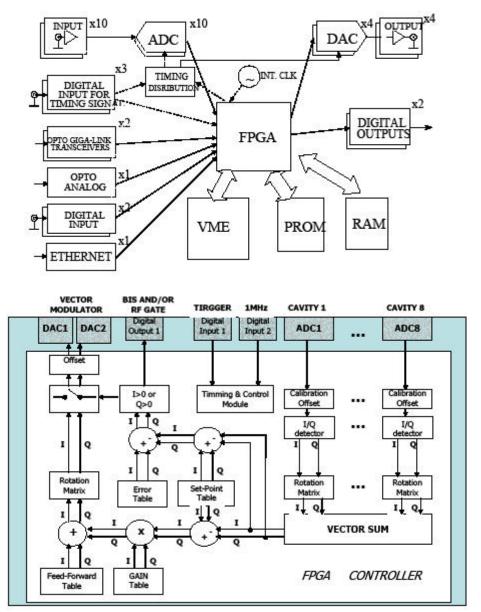
• Climate chamber for evaluation of temperature sensitivity of subsystems

Stefan Simrock

• Short and long term error suppression

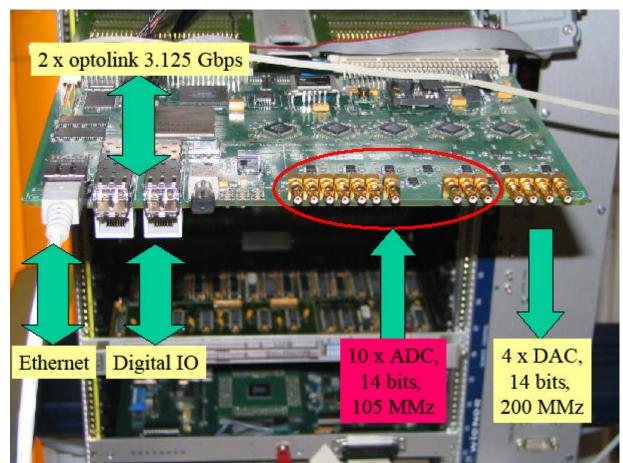
Anuual CARE Mtg. 2005

81 MHz POWER PART



 Master Oszillator with output for many frequencies

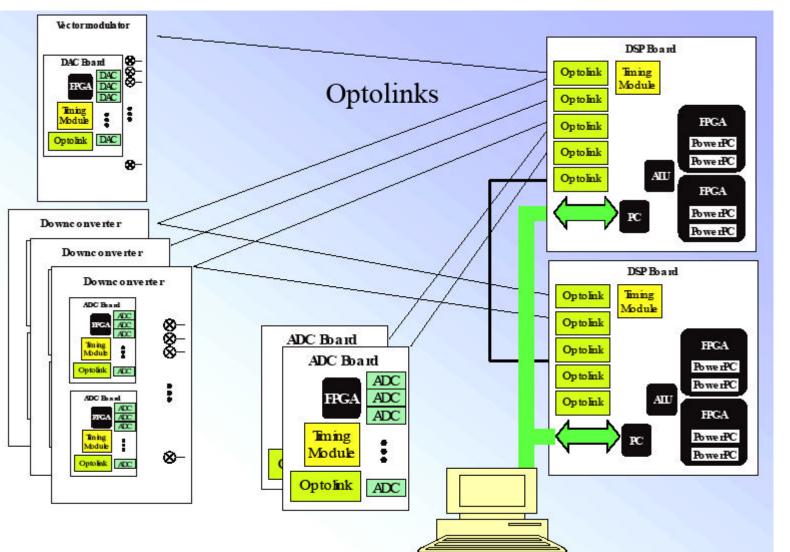
3rd Generation FPGA based RF Control (1)



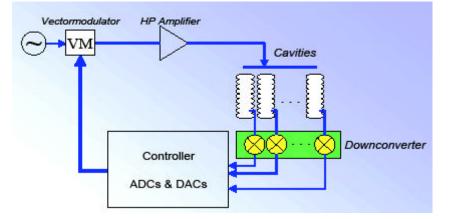
- Digital rf feedback systems for superconductind real time data processing
 - from a large number (up to 128) of ADC input channels and a smaller number (up to 64) DAC output channels.
- The latency from ADC clock to DAC output including all necessary data processing
 - should not exceed a few hundred nanoseconds.

DES

3rd Generation FPGA based RF Control (2)


- FPGAs are well suited for this type of hardware due to their the large number of I/O pins, large number of logic cells, and large number of multiplier cores which allow parallel processing of data.
- Goal is to explore the feasibility of realization of digital feedback and feedforward algorithms, complex application algorithms, exception handling and built-in diagnostics

3rd Generation FPGA based RF Control (3)


- In future more distribution of subsystems connected by optical Gigalinks
- Example: Downconverters with analog I/O and preprocessing
- Issues for single tunnel operation are maintenance and moderate radiation levels

Multichannel downconverter (1)

 Develop low cost and compact high-performance multichannel downconverter

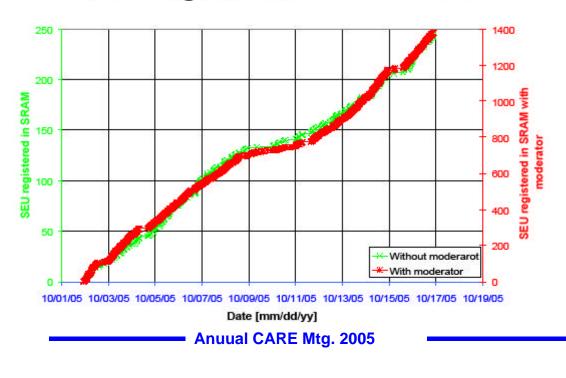
Picture of 3rd generation downconverter.

- 8 in/output channels, 1 LO input
- Linearity <-50dB
- Crosstalk between channels <-50dB
- LO leakage <-50dB @ 1.3GHz
- LO stability -15dB -5dB

Design and assembly at DESY, layouting by external company

DES

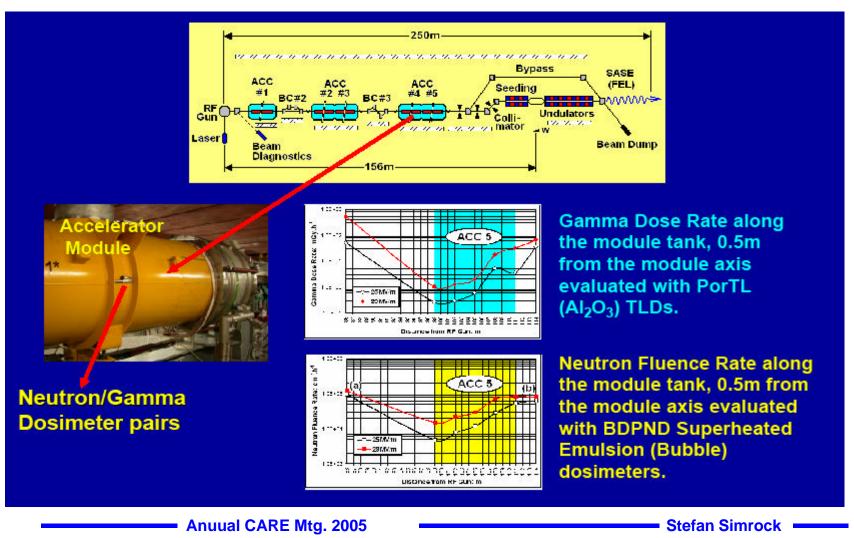
Multichannel downconverter (2)


- Should include
 - remote controlled attenuators at rf inputs
 - RF outputs for transient detection
 - input for rf calibration signals
- Optional:
 - ADCs and FPGA for preprocessing on board and optical Gigalink to connect to main processor for control

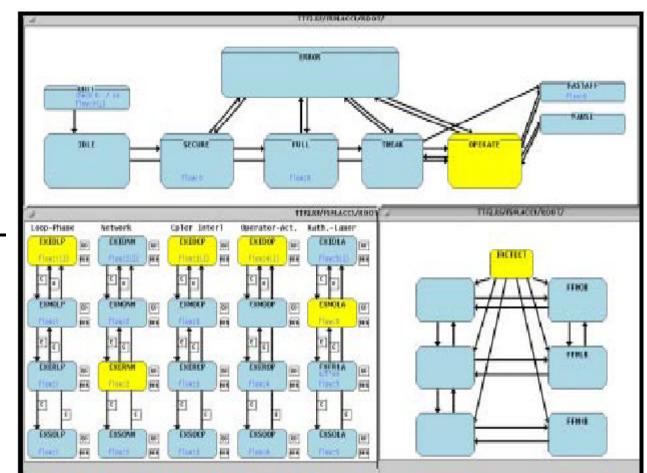
Study rad. effect on electronics (1)

- On-line, calibrated neutron and γ Dosimetry
- Dosimetry based on SEU in semiconductors. Calibration with TLDs and Bubble Dosimeters

SEU registered in VUV-FEL



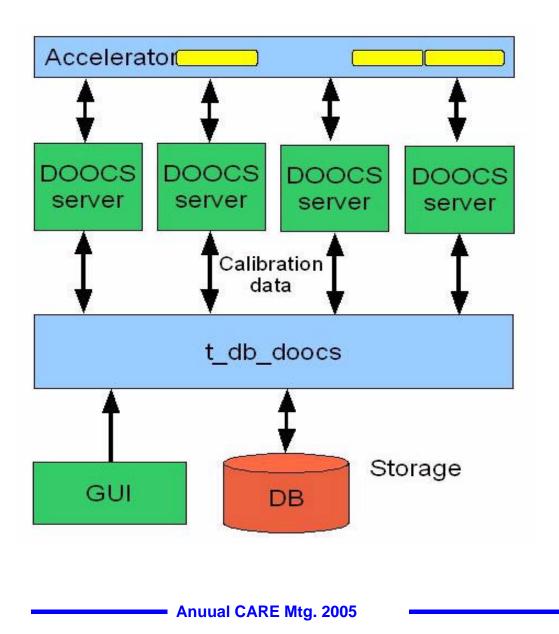
Study rad. effect on electronics (2)


 Radiation impact studies include performance degradation in analog circuits, single event effects in digital electronics, total ionizing dose effects leading to complete failure, and displacement damage.

DES

Finite State Machine (1)

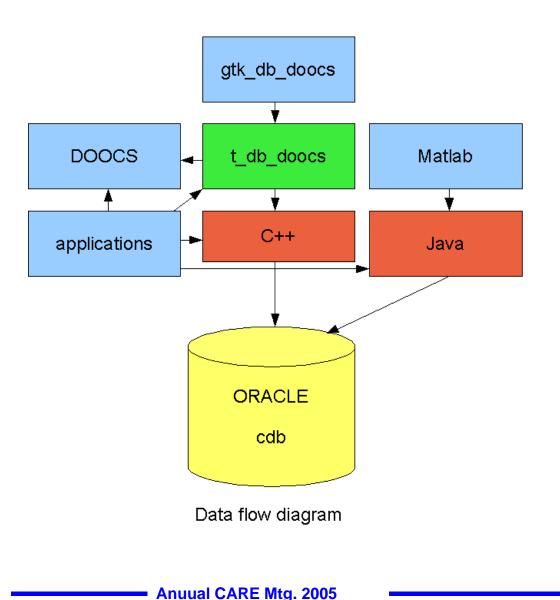
- The automation of the LLRF system will be implemented in the framework of a finite state machine (FSM) which is a well established industrial standard.
- The first step will be the definition of the superstates, substates, flows, entry-, during-, and exit-procedures, entry conditions, timer and event triggered procedures etc..


Finite State Machine (2)

- 1. Offset Calibration
- 2. Loop Phase Determination
- 3. System Gain Determination
- 4. Predetuning of Vectorsum Estimation
- 5. Tuning of the Cavities
- 6. Adapt Feedforward
- 7. Synchronize ADCs of one RF Station
- 8. Calibrate DSP Matrices
- 9. Monitor Data Quality
- 10. Consistency Check
- 11. Interlock Reset
- 12. Calculate Detuning and Bandwidth
- 13. Adjustment of Waveguide Tuner
- 14. Momentum Management
- 15. Exeption Handling
- 16. Save and Restore Settings
- 17. History
- 18. Calibration of Forward and Reflected Power
- 19. Beam Phase Measurement
- 20. LO-Generator-Optimization
- 21. Track Frequency of RF Gun during Warm-Up
- 22. Klystron Linearization
- 23. Kryo Heatload Calculation
- 24. Hardware Diagnostics
- 25. Database with Calibrations
- 26. Database with Operational Limits
- 27. Adjustment of Amplitude and Phase
- 28. Close the Loop and increase Feedback Gain

- The next step is the description of the applications to be used by the FSM.
- Then the above functionality will be implemented as FSM server in DOOCS and the required application programs will be developed.

Data Management System (1)


- The operation of an accelerator requires
 - calibration of operating parameters,
 - characterization of subsystem components,
 - and documentation of the configuration
 - userfriendly data entry and access
- The data management system should be :

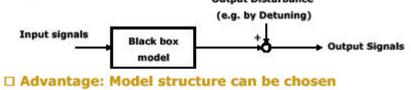
Stefan Simrock

- easy to maintain, and support reliable and reproducible operation of the accelerator

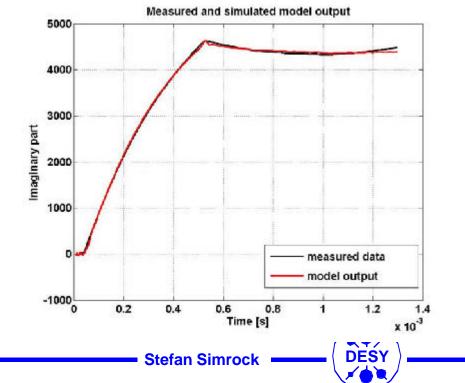
Data Management System (2)

- Solution:
 - application of commercial database engine
 - database structure adapted to accelerator requirements
 - interface compatible with DOOCS
- Implemention:

- Oracle database engine
- Table structure and datatypes
- C++, Java, Matlab interface
- Batch and GUI program interface

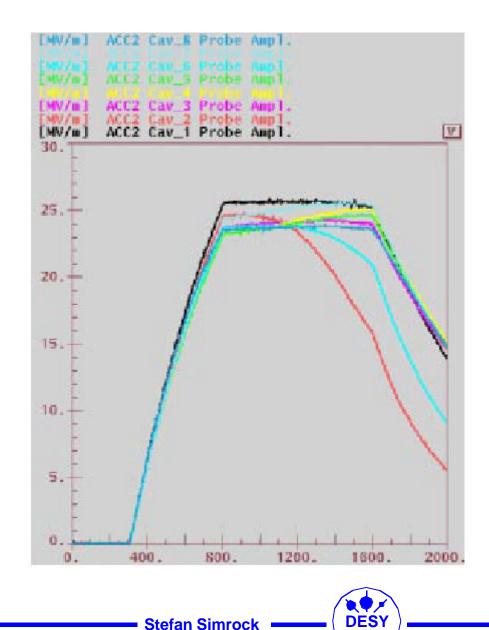


Development of optimal controller


- Modern control theory has developed established methods for the design of optimal controllers.
- The optimal controller should guarantee best performance and robustness in presence
 - of beamloading,
 - Lorentz force detuning
 - and microphonics
 - while operating close to saturation of the klystron and the performance limit of cavities and couplers.

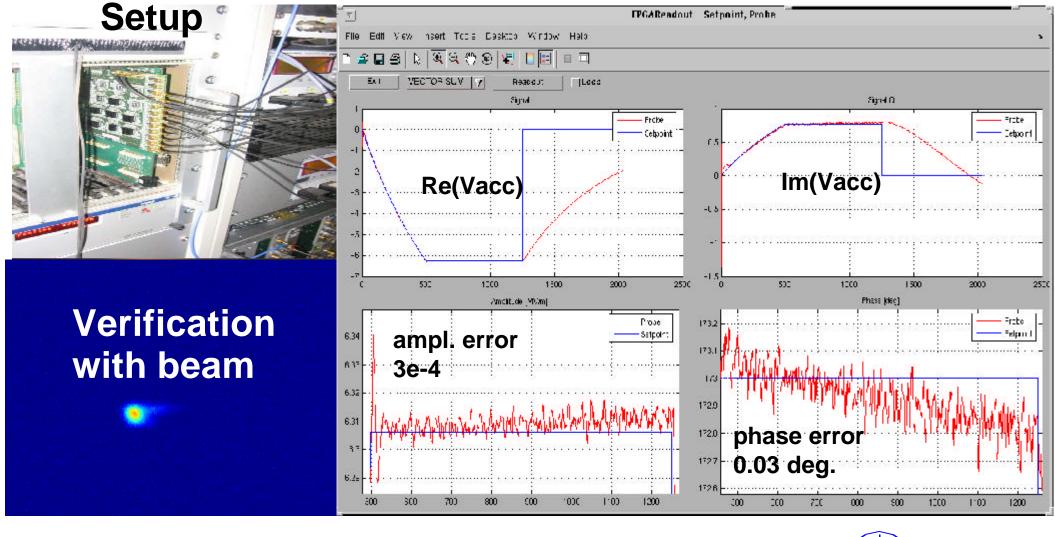
System identification:

- O Experimental based modelling
- O Excite system and record input & output data (open-loop)
- O Data analysis to infer a model with a choosen structure
- Black box model: Not physically interpretable
 System structure:
 Output Disturbance




Exception handling

- Operation of superconducting cavities close to the performance limit will increase the trip rate due to the machine protection system.
- Typical trips include couplers sparcs, cavity quench, klystron sparcs or other faults caused by operation with high power.
- Prototype system evaluated successfully at the VUV-FEL with long pulse operation



Robust RF Gun RF Control

- The normalconducting RF gun requires special control considerations such as
 - low latency in the feedback loop
 - control for temperature of the of the rf gun resonator
 - and interlock scheme.
- Due to the lack of a field probe, the cavity field must be determined by a precision measurement of incident and reflected wave.
- Detuning measured during field decay

Performance of LLRF Verified at VUV-FEL with Beam

Anuual CARE Mtg. 2005

Table 1: LLRF Work Breakdown

	Subsystems and Tasks	RP1	KP2	Team Members	Other Groups	Status
I	Basic tasks					
	Assemble LLRF team (with permant core of qualified experts)					
	Office space (including seminar rooms etc.)		FE	EV		
	Laboratory space and equipment		FE	EV		
	Safety (Documents and Training)	SS		SS, EV, MH, KB		
	Laborleitung	HW	TJ	HW, MH, TJ, BW		
	Teststands					
	with cavity simulator in digital lab	?	?	WK, HW, TJ, BW		
	at module teststand (or Chechia)		TF			
	in accelerator with beam					
	VUV-FEL Operations	VA		VA, AB, TF, HW, GM, WK, PPu		
	VUV-FEL Machine studies	EV		EV, all		
C	Conceptual layout of LLRF System (architecture of LLRF)	SS	SS	core team		
I	LLRF Requirements (technical, operation, etc.)	EV	SS	EV, Industrie		
I	LLRF work breakdown structure		SS	core team		
F	Project management plan (schedule, manpower, cost)		KB	Core team		
F	RF Hardware					
	Master Oscillator and Freqency Distribution; Timing	HW	HW	HW, BL	KR + 2	
	Rack (temperature stabilized) and AC-power	TF	TF	TF		
	Oscillators and PLLs	HW	HW	HW,CZ,BL,FL, MH,KO		
	9, 27, 54, 108, 1300 MHz reference frequencies		HW	HW,		

Responsible Person
 Contact Person

Synchronisation with GPS standard		MH	HB, MH		
Packaging (Crate) and power supplies		TF	TF		
Amplifiers and power splitters		HW	HW, GM		
Patch panels, level adjustment, monitor outputs		TF	TF		
Frequency Distribution	HW	HW	HW,CZ,BL,FL		
coaxial distribution for drive (1300 MHz)		HW	TF		
temperature stabilized distribution for LO		HW	HW, TF		
driveline amplifiers		HW	HW, TF		
directional couplers for driveline		HW	HW, TF		
LO generation and distribution for down/up-converter		GM	HW, GM		
Optical Master Oscillator and Fiber Distribution	AW	AW	AW, FL		
Fiber master oscillator		AW			
Fiber distribution systems		AW			
Optical to RF conversion		AW	AW, FL		
Integration with conventional M.O. and Distr.		AW	AW, FL, HW		
Timing generation	?	KR	1, 2, TJ, KPR, TJ	MVP	
Standard timing		KR	1,2		
Clock generation ADC clock (81*4/9 MHz) LLRF		TJ			
Trigger (various events)		KR			
Integration with M.O.		?			
Timing Distribution (global and local)		KR		MVP	
Timing distribution					
Up/downconverters, actuators and field detection	FL	GM	GM,MH,TF,FL		
Patch panels for RF and LO signals		TF			
Level adjustment to downconverter		GM	GM	MVP	
Downconverter (Probe, forward- and reflected power)		GM	GM, FL,		
Integration of downconverter, level adjustment, rf test sig nal input with ADC, FPGA, opto.link on one board	WG	WG	WG, TJ, MG, KP, WJ, FL, GM, KZ, BL, HW		

IF signal conditioning		GM			
Up-converter or vector-modulator	MH	MH	MH, HW, TJ		
RF gate (with various inputs)		GM	GM		
High performance field detectors for injector		FL	МН		
Field detectors for RF gun		FL	МН		
Phase noise modelling of synchronization		AW			
Single bunch transient detector		PP	PP, MG		
Wave guide tuner control (also power distribution ?)		?	?		
or phase shifter and variable coupler					
Digital Feedback Hardware		WG	WG, WJ, TJ, MG		
FPGA carrier board with floating point processor					
ADC mezzanine card (daughter board)					
DAC mezzanine card (daughter board)					
Gigalink interface (optical or coaxial)					
Timing module					
Digital I/O interface					
Beam input for feedforward (current and phase)					
Cavity simulator (32 cavities)		?	?		
Monitor and diagnostic Hardware		?	?	MVP	
ADC boards		KR		MVP	
DAC boards		PV		FEA	
Piezo tuner controller		LL	LL, PS	FLA, TUL	
Piezo fixture		LL			
Piezo Driver		?	?		
Piezo power supply		?	?		
Sensor and readout		?	?		

Special hardware	?		
Ferrite tuner + drive	?		
Analog fiber optic link	?		
Piezo tuner controller	?		
Fundamental coupler Qext controller	?		
General Software Issues			
Architecture of Software			
Platform Independent Drivers, Interfaces			
Middleware (Interface between software, firmwarre and hard			
ware)			
Tools used for programming			
VHDL			
C++			
other programming languages			
Choice of operating systems			
Concept of exchanging sofware between collaborations			
Digital Feedback Software	WK	WK,	
FPGA/DSP (floating point CPU) code			
Rotation matrix (field calibration)			
state estimator			
feedback algorithm			
feedforward algorithm			
exception handling			
loop phase			
quench detection			
klystron linearization			
FPGA/DSP server	PP		1
Load programs			
Load parameters		1	

Table generation			
Monitor software	KR	MVP	
Monitor probe, forward/reflected power			
Application programs	AB		
Adaptive Feedforward (synch. with beam)			
System Identification			
Loop phase			
Detuning and loaded Q			
Gradient and phase calibration			
Beam phase measurement			
Automated frequency tuning (motor tuner)			
Piezo tuner control			
Fundamental coupler Qext control			
Exception handling			
High level applications	AB		
Momentum management			
Momentum vernier feedback			
Beam based gradient and phase feedback			
Finite state machine (automated operation)	VA		
rf system start-up			
setting of operational parameters			
beam loading compensation			
cavity detuning			
adjustment of loaded Q and incident wave			
exception handling			
Performance optimisation			
rf field stability			
maximum energy			

minimal trip rate			
Miscellaneous software			
Power PC and DOOCS	PP	PP,JS,PK,JZ	
VHDL		WK,WJ,KB,TJ,MG,DM,WG,	
Algorithm Development	AB	AB, EV,MH, GP, SS	
RF System Diagnostics	TJ		
Interlocks			
Display Development (Operator Displays)	?		
Cavity and coupler conditioning	?		
Vertical teststand	?		
Doocs property generation	PP		
Faults			
Warnings			
Performance parameters			
Status parameters			
Doocs features			
Save/restore settings			
History			
Database (data management for calibration etc.)			
Hardware/software diagnostic tools	TJ		
Procedures	VA	VA, EV, SS, MH	
Commissioning procedures			
Open loop operation			
adjustment of frequency tuner			
adjustment of loaded Q			
closed loop operation			
gradient and phase calibration			

calibration of forward and reflected power			
Operating procedures	VA	VA,EV,SS,MH	
Turn-on of RF system			
set-up for beam operation			
Electronic design issues and standards			
EMC and EMI	?		
Grounding and shielding			
Electromagnetic emissioning			
Radiation immunity	?		
Single event upset (neutrons)			
Displacement damage			
Total ionising dose			
In-situ radiation dose measurement (neutrons and gamma)			
Racks and Crates	TF		
Airconditioned racks, hermetically sealed (dust)			
Power only crate standard (backplane, connectors etc.)			
Power supplies for crates			
Control systeme standard crate (VME bus, ethernet etc.)			
Cabling	TF		
between boards, crates, racks, crossconnects, patch panels			
between subsystems			
Reliability	NP		
Maintainability			
Cost vs performance optimisation			
RF system modelling	EV	EV,SS,MH,AB	
Prediction of technical performance			
Development of algorithms			
Documentation			

	LLRF requirement document			
	LLRF specification			
	LLRF design			
	LLRF operations manual			
	LLRF users manual			
	LLRF trouble shooting manual			
Tot	al			