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Introduction

• Extensive literature for wakefield effects and many computer 
codes for their calculations

- concentrates on wake effects in RF cavities (axial
symmetry)

- only lower order modes are important
- only long-range wakefields are considered

• For collimators:
- particle bunches distorted from their Gaussian shape
- short-range wakefields are important
- higher order modes must be considered (particle close to
the collimator edges)



Wake Effects from a Single Charge

• Investigate the effect of a leading unit charge on a trailing unit charge separated 
by distance s

r’,φ’

s

r, φ

s

• the change in momentum of the trailing particle is a vector w called ‘wake potential’

• w is the gradient of the ‘scalar wake potential’:  w=∇W

• W is a solution of the 2-D Laplace Equation where the coordinates refer to the trailing
particle; W can be expanded as a Fourier series:

W (r, θ, r’,s) = ∑ Wm(s) r’m rm cos(mθ) (Wm is the ‘wake function’)

• the transverse and longitudinal wake potentials wL and wT can be obtained from this 
equation



wz = ∑ W’m(s) rm [ Cmcos(mθ) - Sm sin(mθ)]

wx = ∑m Wm(s) rm-1 {Cmcos[(m-1)θ] +Sm sin[(m-1)θ]}

wy = ∑m Wm(s) rm-1 {Sm cos[(m-1)θ] - Cm sin[(m-1)θ]}

The Effect of a Slice

- the effect on a trailing particle of a bunch slice of N particles all ahead by the same

distance s is given by simple summation over all particles in the slice

- if we write: Cm =  ∑r’m cos(mθ’)   and   Sm =  ∑r’m sin(mθ’) the combined kick is:

- for a particle in slice i, a wakefield effect is received for all slices j≥i:

∑j wx = ∑m m rm-1 { cos [ (m-1)θ ] ∑jWm(sj) Cmj + 

sin [ (m-1)θ ] ∑jWm(sj) Smj }



Changes to MERLIN

Previously in Merlin:
• Two base classes: WakeFieldProcess and 

WakePotentials
- transverse wakefields ( only dipole mode)
- longitudinal wakefields

Changes to Merlin
• Some functions made virtual in the base 

classes
• Two derived classes:

- SpoilerWakeFieldProcess - does the
summations

- SpoilerWakePotentials - provides
prototypes for W(m,s) functions (virtual)

• The actual form of W(m,s) for a collimator 
type is provided in a class derived from 
SpoilerWakePotentials

WakeFieldProcess WakePotentials

SpoilerWakeFieldProcess

CalculateCm();
CalculateSm();

CalculateWakeT();
CalculateWakeL();
ApplyWakefield ();

SpoilerWakePotentials

nmodes;
virtual Wtrans(s,m);
virtual Wlong(s,m);



Example

Wm(z) = 2 (1/a2m - 1/b2m) exp (-mz/a) Θ(z)

Class  TaperedCollimatorPotentials:  public   SpoilerWakePotentials

{ public:

double a, b;

double* coeff;

TaperedCollimatorPotentials (int m, double rada, double radb) : SpoilerWakePotentials (m, 0. , 0. )

{        a = rada;

b = radb;

coeff = new double [m];

for (int i=0; i<m; i++)

{coeff [i] = 2*(1./pow(a, 2*i) - 1./pow(b, 2*i));}  }

~TaperedCollimatorPotentials(){delete [ ] coeff;}

double Wlong (double z, int m) const {return z>0 ? -(m/a)*coeff [m]/exp (m*z/a) : 0 ;} ;

double Wtrans (double z, int m) const { return z>0 ? coeff[m] / exp(m*z/a) : 0 ; } ;       };

b a
Tapered collimator in

the diffractive regime:



Simulations

• large displacement - 1.5 mm
• one mode considered
• the bunch tail gets a bigger kick

• small displacement  - 0.5 mm
• one mode considered
• effect is small
• adding m=2,3 etc does not

change much the result

• large displacement - 1.5 mm
• higher order modes considered
(ie. m=3)

• the effect on the bunch tail
is significant

SLAC beam tests simulated: energy - 1.19 GeV, bunch charge - 2*1010 e-

Collimator half -width: 1.9 mm



Application to the ILC - BDS 
collimators

- beam is sent through the BDS off-axis (beam offset 
applied at the end of  the linac)

- parameters at the end of linac:

βx=45.89 m            εx=2 10-11 σx =  30.4 10-6 m

βy =10.71 m         εy =8.18 10-14 σy =  0.9 10-6 m 

-interested in variation in beam sizes at the IP and in
bunch shape due to wakefields
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- beam size at the IP in absence of
wakefields:

σx = 6.51*10-7 m

σy = 5.69*10-9 m

- wakefields switched on -> an increase

in the beamsize 

- higher order modes are not an issue

when the  beam offset in increased up

to 0.25 mm

- from 0.3 mm beam offset, higher order

modes become important

- beam size for an offset of 0.45 mm:

σx = 1.70*10-3 m

σy = 4.77*10-4 m

Emittance dilution due to wakefield



- luminosity in absence of wakefields:

L = 2.03*1038 m-2 s-1

- at 0.25 mm offset: L~ 1034

- at 0.45 mm offset:  L~1029

-> Catastrophic!

Luminosity loss due to wakefields

How far from the axis can be the beam to avoid a drop in the

luminosity from  L~1038 to L~1037 m-2 s-1 ?



Emittance dilution for very small offsets



Luminosity 
• Luminosity is stable (L~1038) for beam offsets up to 16 sigmas

• At beam offsets of 45 sigmas (approx. 40 um) luminosity drops from 
L~1038 to L~1037

->  contribution from higher order modes is very small when beam is 
close to the axis



Extracting Delta Wakes from EM 
simulations

• Problem: how to extract delta wakes used by Merlin, Placet, etc. from 
bunch wakes available from EM simulations

• Wake functions Wm(s) depend on component. Give variation with  
longitudinal co-ordinate s=z1-z2.  (Variation with transverse coordinates 
specified by axial symmetry and Maxwell’s equations)

• Analytic formulae available but only for some shapes and with arguable 
regions of validity 

• EM simulators (ECHO, GDFIDL, HFSS etc) give wake functions due to 
bunches with some finite σ

• Taking limit of small σ needs small mesh size and computing time 
explodes 



Tapered collimator

• Radius  a=0.2 cm
• Beam pipe b=1.9 cm
• 10 cm long



Analytic formulae

Wm(s)=2(1/a2m-1/b2m)exp(-ms/a) (Zotter & Kheifets)



EM simulation

• Simulated using 
Echo-2D (Igor 
Zagorodnov)

• Gaussian beam, 
s=0.1 cm



Fourier Deconvolution

Wbunch(s,m)=Wdelta(s,m) ⊗Gaussian

Take FT of ECHO result and 
FT of Gaussian

Divide to obtain FT of delta 
wake

Back-transform.
Horrible!  But mathematically 

correct
Due to noise in spectra. Well 

known problem



Try simple Inverse Filter

Cap factor 
1./FTdenom(k)
at value gamma
gamma=5 seems 

reasonable 



Reconstructed delta wakes

• Compare with  analytic 
formula

• Qualitative agreement on 
increase in size and 
decrease in width for 
higher modes

• Positive excursions not 
reproduced by formula

• Still problems with 
deconvolution: hard to 
synthesise  necessary 
step function when higher 
modes damped



Next steps

• Use more sophisticated filter, incorporating 
causality (W(s)=0 for s<0)

• Compare simulations and formulae and 
establish conditions for validity

• Delta wakes extracted from simulations 
usable in Merlin (numerical tables) for 
collimators where analytical formulae not 
known

• Extend to non-axial collimators.


