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Motivation

I In CLIC remaining misalignments after prealignment cause
unacceptable emittance growth.

I Beam-based alignment methods such as one-to-one correction,
Dispersion Free Steering and Ballistic Alignment are not enough to
achieve acceptable emittance growth.

I Emittance tuning bumps have to be used to reduce the remaining
emittance growth

I Potential problems for the CLIC bump implementation include: finite
mover stepsize, crosstalk between bumps and limited range for
structure displacements.

I A general method for bump implementation has been developed.

I A fast routine for bump tuning has been implemented.



Prealignment and Beam-Based Alignment

I Prealignment is assumed to be done
with precision according to the CLIC
yellow report.

I PLACET used to create 100 machines
(seeds) with elements scattered
according to a Gaussian distribution.

I Then one-to-one correction and
Dispersion Free Steering is used for
further alignment.

I Finally structures are aligned to the
beam (with a finite precision.)

Element σ

Quads 50 µm
Acc. struct. 10 µm
Acc. struct.
realign.

10 µm

Acc. struct.
vert. angle

10 µ

Bpms 10 µm
Bpm res. 0.1 µm
Bpm scale
error

10%



Beam-Based Alignment Performance
Using only 121 correction

I Far above the emittance growth target of 5nm.
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Beam-based Alignment Performance
Using 121 and DFS

I Better, but far from 5nm.
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Beam-based alignment performance
Using 121, DFS and aligning structures

I Even better. At the end of the linac emittance growth is 23.8nm.
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Emittance Tuning Bumps
General Description

I Consist of tuning knobs and measurement station.

I The term tuning knob is quite general. In this case a knob
corresponds to displacement of one or several structures or quads.

I For CLIC main contribution to remaining emittance growth after
beam-based alignment is wakefields from misaligned structures.

I The idea is to use vertical structure displacements to give rise to
wakefield kicks that cancel the unwanted wakefield kicks.



Emittance Tuning Bumps
Measurement station 1

I Previous studies used local emittance measurements.
I Each knob corresponded to a displacement of one single structure.
I No iterations are needed if one knob after the other (from the

beginning to the end) is corrected.
I Problem is that local emittance minima do not guarantee minimised

emittance at the end of the linac.
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Emittance Tuning Bumps
Measurement station 2

I In this case the measurement station measures emittance at the end
of the linac.

I More powerful than local measurements since the most relevant
value is measured.

I More complex since knobs in general become dependent and the
crosstalk makes it necessary to iterate the tuning procedure.

I Simulations with promising results have also been carried out where
two laserwires separated by a phase advance of 90◦ were used to get
a tuning signal. The laserwires were assumed to have gaussian
transverse profile of the same size as a perfect target beam, thereby
measuring the profile of the studied beam weighted with a gaussian
distribution representing the target beam size.

I See for example: P. Eliasson, D. Schulte, “Luminosity Tuning Bumps
in the CLIC Main Linac”, EUROTeV-Report-2005-007-1, 2005



Emittance Tuning Bumps
Optimisation procedure

I Knobs are tuned by testing different knob settings and recording the
measurement station readings. Optimum knob setting is determined
with a quadratic fit.

I All knobs are tuned one by one. This procedure in general has to be
iterated.
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Basic Tuning Bumps Performance

I 10 knobs each corresponding to
a vertical displacement of one
single structures.

I Structures are arranged in pairs
(the structures of a pair being
positioned after 2 consecutive
focusing quadrupoles). Pairs
are equidistant in terms of
number of quadrupoles.
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I Using these 10 knobs the emittance growth can be reduced to
acceptable levels (∆εy ≈ 0.9nm).

I Observe that the final emittance growth these 10 structures is
similar to using 20 structures and local emittance measurements.



Basic Tuning Bumps Performance
Potential problems 1

I Potential problems:
I Unacceptably large structure displacements necessary.
I Convergence: many iterations needed to reach minimum (due to

“crosstalk” between the knobs). With only 10 knobs this is not a big
problem.
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Basic Tuning Bumps Performance
Potential problems 2

I Potential problems:
I The large structure displacements can be reduced by using more

structures (40 in this case).
I Each knob is now controlling a group of four structures all close to

one focusing quadrupole.
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Convergence and degrees of freedom
Vector representation 1

I Our system is linear as long as the knobs correspond to structure
displacements.

I For a given seed the final beam after BBA can be represented by a
vector

si = (y1
i , y2

i , . . . , yp
i , βy

′1
i , βy

′2
i , . . . , βy

′p
i ) (1)

I And each knob can be represented by

ki = (∆y1
i ,∆y2

i , . . . ,∆yp
i , β∆y

′1
i , β∆y

′2
i , . . . , β∆y

′p
i ) (2)

I In other words si contains the p particle positions and p particle
angles at the end of the linac. Similarly ki contains changes in
particle positions and angles for a unit change of knob i .

I We will as an example use the 662 knob vectors representing each
structure immediately following a focusing quadrupole). We also
produce 100 seeds corrected by BBA.

I In our case, vectors are 294-dimensional (the beams used during
simulations consisted of np = 147 macroparticles.



Convergence and degrees of freedom
Vector representation 2

I The vectors can be depicted by 2D-plots. To the left s1. To the
right k40 and k662
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I To minimise the emittance we should try to turn the left plot into a
straight line by using the knobs ki



Convergence and degrees of freedom
Vector representation 3

I The 100 seed vectors si span a subspace of the 294-dimensional
space. If they are linearly independent this subspace is of dimension
100.

I The 662 knob vectors are of course not linearly independent

I If the knobvectors span the subspace of the 100 seed vectors, knob
settings xi exist such that

si −Kxi = 0, ∀i (3)
I where

K = (k1, k2, . . . , k662) (4)



Singular Value Decomposition (SVD)

I The 100 seed vectors point in 100 independent directions. Only a
few of these are of importance though.

I This can be shown in a number of ways. Easiest might be to study
the singular values of the matrix

S = (s1, s2, . . . , s100) (5)

I The SVD algorithm decomposes the matrix S into the product

S = UsWsV
T
s (6)

I Here Us is an orthonormal matrix spanning the same space as S.
Ws is a diagonal matrix with the singular values (importance of
directions) of S in decreasing order in the diagonal. VT

s is a square
orthonormal matrix



Singular Value Decomposition

I The singular values of S decrease rapidly.
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I If we truncate Ws by setting the n diagonal elements wi for which
wi < 0.01w1 (or some other truncation limit) to wi = 0 we obtain
the matrix

S̃ ≈ UsW̃sV
T
s (7)

I S̃ is a good approximation to S. Consequently we can use n of the
columns of Us to span the same space as S.



Singular Value Decomposition

I Even though the seed vectors span a 100-dimensional space, 9 knobs
might be sufficient to correct all 100 machines (truncation
limit=1%)

I It is unlikely that a larger set of machines would be more difficult to
correct. The plots below show the development of singular values as
one seed vector after the other is added.
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Singular Value Decomposition

I SVD can also be used to study the knob vector space.

K = UkWkV
T
k (8)

I where

K = (k1, k2, . . . , k662) (9)

I The same arguments as before show that the 662 knob vectors only
have 16 relevant directions (truncation limit = 1%)



Orthogonal knobs
Construction

I Observe that Uk gives an orthonormal base for the knob vector
space. In particular its first 16 columns span the 16-dimensional
subspace mentioned above.

I Eq. 8 may be rewritten as

Uk = KVW−1
k (10)

I First 16 columns of VW−1
k describe the linear combinations of K

which form an orthonormal base for the 16-dimensional subspace.

I We have thus managed to construct 16 orthogonal knobs, each
corresponding to a pattern of displacements of all 662 structures.
Do they work?



Orthogonal knobs
Performance

I Emittance redcution is excellent with 16 knobs
I Faster convergence with 10, slightly worse final emittance.

I In principle 2 iterations enough

I What about structure displacements for optimum knob settings?
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Structure displacements

I Structure displacements are not too far from being acceptable.
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Orthogonal knobs
10, 40 structures

I As another example of the orthogonalisation of knobs we look at the
10 and 40 structures again. Fewer structures means:

I Fewer movers. A limited number of structures could be put on
special movers that are faster and more precise than the
prealignment movers.

I Larger displacements needed.

I Orthogonalisation of the knob vectors as before.

I In both cases a significant improvement of the convergence is
obtained. To the left 40 structures, to the right 10.
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Orthogonal knobs
Another example

I If 40 structures each controlled by its own knob for some reason
would be used for tuning the convergence would be terrible.

I As we concluded earlier no more than 10-16 knobs makes sense.

I The SVD strategy can be used to reduce the number of knobs to 10
orthogonal ones.

I Convergence is improved a lot.
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Orthogonal knobs
One last example

I 12 knobs constructed using all focusing quadrupoles in CLIC.

I Result is not as good as with accelerating structures.
I Difficult to cancel wakefields without introducing dispersion with the

quads.

I Besides mover sensitivity will be an issue, see two last slides.
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Comment on the “tracking” procedure

I Previous simulations of the bumps were relatively time consuming
and . PLACET was used to track the beam through the whole line
for every single knobsetting tested.

I Since I implemented a new PLACET routine which can be used for
linear knobs the time consumption for a certain simulation was
reduced from a few hours to a few minutes.

I The routine simply stores the seed vectors and calculates the knob
vectors by normal PLACET tracking. When these vectors have been
calculated no more tracking is needed until the quadratic fit routine
has calculated the optimal knob settings.

I For a person who wants to study the effect of different BBA
methods for CLIC the use of tuning bumps is of importance to get
the final picture. A fast and easy way to simulate the tuning bumps
is very important. The new routines also simplifies life a lot for
someone who wants to study different tuning bump strategies.



Final comments on CLIC tuning bumps

I Already the 10 basic knobs gave very good emittance reduction.
I 10 knobs might be just enough since the seed space had 9 degrees of

freedom.
I Very large structure displacements necessary though.

I With 40 structures in groups of 4 controlled by 10 orthogonal knobs,
we got

I Lower final emittance
I Same convergence speed.
I Reduced structure displacements.
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Some comments on ILC

I A few slides to show that this kind of treatment of the
implementation of bumps is also very useful for ILC.

I With very similar methods as described earlier a set of quadrupoles
(structures are not foreseen to be on movers) have been used to
create knobs. Problem is that by moving a quadrupole both
dispersion and wakefields are introduced.

I The knobs were constructed as linear combinations of the
quadrupole knob vectors in such a way that they were identical to
the knob vectors of structure displacements and also to the knob
vectors of artificial dispersion bumps.

I The use of the artificial dispersion bumps and the bumps based on
structure displacements had already been shown to be very efficient.



Some comments on ILC

I The right linear combination of quadrupole vectors has almost
exactly the same effect on yi and y ′i as an artificial dispersion bump
positioned at the end of the linac.
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Emittance growth histogram

I The realistic bumps give almost exactly the same final emittance as
the artificial ones. For ILC the target for emittance growth is
maximum 10% of all machines above 10nm.
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Tuning bumps convergence speed

I Emittance growth vs optimisation steps for the different bumps.
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Some comments on ILC
I If all quadrupoles are used to construct knobs with the same effect

as the artificial ones, the tuning gets sensitive to the mover step
size. This problem is much less severe in case a few “good”
quadrupoles are chosen.
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Some more comments on ILC

I The step size problem is similar to what is experienced when
quadrupoles are used as feedback correctors.

I In that case the MICADO algorithm is used to choose the “optimal”
subset of quads. These quads perform as well as all together, but the
system becomes less sensitive to mover step size.

I A few different approaches to find a subset of quads for the bumps
have been tested

I “MICADO”: The single quad that does the job best is chosen and
moved to its optimal position. Then one by one quad that best
optimises the problem is chosen in the same way.

I Reoptimised “MICADO”: Similar, but when each new quad is being
tested both this quad and the previously chosen are optimised.

I LA solution: The quad vector with the longest projection on the seed
or knob space is chosen and then one by one quad orthogonal to the
previous ones is selected in the same way.

I Especially the second approach was efficient and clearly improved
the results compared to using equidistant quads.
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