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Overview

v' Adaptive Alignment (AA)- Basic Principle

v AA
» Single Quad Misalignment
» Random Quad Misalignments

» Sensitivity - BPM Offset, BPM resolution etc.

v Ground Motion in LIAR
» AA In Perfect Lattice
» AA in Dispersion Free Steered Lattice
» Effect of BPM resolution on AA

v" Lucretia — DFS Implementation

v' Summary
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Adaptive Alignment (AA)— Basic Principle <=

o v

i+1
v" Proposed by V.Balakin in 1991 for VLEPP project

v “local” method: BPM readings (A, of only 3 (or 5 or so on) neighboring quads
are used to determine the necessary shifting of the central quad (4y).

AE
Ay. =conv*[A. +A.  —A *{2+K. L _E)}]

conv . Speed of convergence of algorithm

A, BPM reading of the central quad and so on

K, . Inverse of quad focusing length

L . Distance between successive quads (assuming same distance b/w quads)

AE : Energy gain between successive quads N

E : Beam Energy at central quad New position of quad & BPM:
Y; =Y —AyY.

v' The procedure is iteratively repeated
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Experimental Test

v’ Linac 96, V. Alexandrov, V. Balakin, A. Lunin at FFTB
v' This algorithm smoothes the sharp thrusts very fastly, and more slowly - the fluent ones.

v’ Adaptive alignment is sensitive only to the real displacement of quads, but not to the beam
oscillations.

Before AA (BPM rms: 53um, Ay = -12.8um) 7th AA iteration (BPM rms: 6um; Ay = -1.4um)
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Fig. 2 Vertical component of the beam oscillations (upper part of
the picture) and suggested shifts of quads (lower part of the
picture) after 7 iterations of the Adaptive Alignment.

Fig. 1 Vertical component of the beam oscillations (upper part of
the picture) and suggested shifts of quads (lower part of the
picture) before the Adaptive Alignment.

v’ After the procedure of AA the beam reduced its oscillations about 10 times. The suggested
shifts are about zero. It means that the quads are in practically straight line.
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Single Quad Misalignment (1/2)

> ILC BCD Like Lattice (approx. 240 Quads/BPMs, distributed during ILC LET meeting)— Straight
— Only one quad at 10t position is vertically misaligned by 300um (BPMs are perfectly aligned
with Quads, and have perfect resolution)
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Single Quad Misalignment (2/2)

Y-normalized emittance (nm) @ Linac exit vs. AA iterations
(Convergence = 1/3)
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Random Quad Misalignments (1/3)

= 100 FODO cells, straight lattice

= Misalignments:Random Quad offset=100um RMS; BPM aligned with Quads; No other errors

Y-emittance (nm) @ Linac exit vs. No. of AA lterations (Conv. = 1/3)
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Absolute Beam y-position (um) vs. BPM
index after different AA iteration steps

Random Quad Misalignments (2/3)
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CONVERGENCE
Y-emittance (nm) @ Linac exit vs. No. of AA lterations for different conv. values

Zoom in the ite;rations
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Random BPM Misalignments w.r.t. Quad (1/2)

= 100 FODO cells, straight lattice
= Misalignments: Random Quad offset = 100 pm RMS ; BPM offsets w.r.t. Quad = 100 pum RMS

Absolute Beam position (um) vs. BPM
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Random BPM Misalignments w.r.t. Quad (2/2) —<-

Y-emittance (nm) @ Linac exit vs. No. of AA lterations for different BPM offsets wrt Quads
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BPM Resolution

= 100 FODO cells, straight lattice; Misalignments: Random Quad offset = 100 um RMS ;
BPM offsets w.r.t. Quad = 20 um RMS; BPM resolution is varied

Y-emittance (nm) @ Linac exit vs. No. of AA lterations for different BPM resolution
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Other Effects

Y-emittance (nm) @ Linac exit vs. No. of Iterations
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Cavity offsets are OK; but large values of
Cavity pitch and BPM offsets wrt Quad
confuses AA. Also sensitive to BPM resolution.
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Recent developments of LIAR Simulation Code, PT, Hendrickson, Seryi, Stupakov, SLAC, EPAC 2002

v' Modeled with a 2-D Power Spectrum P(w,k)
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Figure 1: The mtegrated absolute ground motion spectra
(solid lines) and the inteprated relative motion of 2 objects
separated by 50 m (dashed lines)

v' Different GM Models in LIAR

1+ [{ér,'l:a.b' — W }/n.b',].l .

Eq. 1 describes wavelike ground motion where the power
spectrum falls off’ with the inverse fourth power of fre-
quency from each of a series of peaks; the parameters
a;, w;, d;, v; correspond to the amplitude, frequency,
and width of the peak and the frequency-velocity relation
of the waves, respectively. The parameter A, is the am-
plitude of the diffusive ground motion, which falls as the
mverse square of frequency. Note that, since the diffusive
motion falls more slowly than wavelike motion, this model
would tend to predict that the relative motion of two sep-
arated objects will, for some frequencies, exceed their ab-
solute motion. In order to prevent this, an ATL correction
term, 34, is added.
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GM — Effect on Perfect Lattice

e Perfectly straight lattice — ILC BCD Like Straight Lattice (240 Quads)
» 10 different GM seeds (GM — Model ‘C’) A [m**2/m/s] : 1.00000E-17
In each seed

e GM of 15 hrs. in step of 1 hr.
e When AA incorporated: AA of 100 iterations after every one hr. (perfect BPMs,
conv = 0.2, no GM during AA iterations )

Y-emittance (nm) @ Linac exit vs. time (hrs.)
Mean of 10 random GM seeds
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AA helps in keeping emittance dilution to minimum even after 1 hour of GM,
which otherwise causes reasonable emittance growth
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GM — Effect on Perfect Lattice
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In all the seeds, AA converges towards small values of emittance
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GM — Effect on Dispersion Free (DF) Steered Lattice —

e ILC BCD Like Straight Lattice - Initial elements (quad, bpm, cavity, ycor) settings are those
obtained after one particular DFS iteration. All errors (except BPM resolution) as in DFS

e 10 different GM seeds (GM — Model —-C); In each seed

e GM of 15 hrs. in step of 1 hr.

e When AA incorporated: AA of 100 iterations after every one hr. (perfect BPMs, conv = 0.2)

Y-emittance (nm) @ Linac exit vs. time (hrs.)
Mean of 10 random GM seeds
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Starting from DF steered Lattice, AA helps in keeping emittance dilution to minimum
(obtained after DFS) after 1 hour of GM, which otherwise causes reasonable emittance growth
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GM — Effect on Dispersion Free (DF) Steered Lattice —<"-

Y-emittance (nm) @ Linac exit vs. AA iteration for all 10 individual seeds
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In all the seeds, AA converges towards small values of emittance
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GM — Effect on Dispersion Free (DF) Steered Lattice —

n

e DF Steered Lattice + 1 um BPM resolution

Y-emittance (nm) @ Linac exit vs. time (hrs.) Y-emittance at the Linac exit(nm) vs.
Mean of 10 seeds AA iterations
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BPM resolution of even 1um plays very detrimental role on AA performance. Starting
from DF steered Lattice, AA is unable to keep emittance dilution to minimum after 1
hour of GM. Similar effect in Perfect Linac also.
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AA and BPM resolution

» ILC BCD Straight lattice: Perfect; No ground motion
e 100 iterations of AA (conv. = 0.2) just in the presence of BPM resolution

Y-emittance at the Linac exit (nm) vs. AA iterations
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AA gets confused even for lum BPM resolution.
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AA and BPM resolution

Assuming single-bunch BPM resolution to be 1um, we can average over few bpm readings for
our purposes? With perfectly aligned lattice

= Y-emittance (nm) at the Linac exit vs. AA iterations
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If we average over 25 bunches, we get much improved results. In ILC train there are

1000-6000 bunches in a single pulse which we can average
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GM — Effect on Dispersion Free (DF) Steered Lattice —

n

e Straight lattice: DF steered
e 10 different GM seeds; GM of 15 hrs. in step of 1 hr.
* When AA incorporated: AA of 100 iterations after every one hr. (convergence = 0.2)

Y-emittance (nm) @ Linac exit vs. time (hrs.)

E Mean of 10 seeds
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45
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35_
B ﬁ zoom
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Assuming effective BPM resolution to be 0.2 um by, say, summing over say 25 bunches,
then the results from AA are much better

Jan.8-11, 2007 KIRTI RANJAN 22



GM — Effect on Dispersion Free (DF) Steered Lattice —<

By how much amount the emittance dilution increases in an hour after 100 iterations of AA ?

e 10 different GM seeds
e GM of 15 hrs. in step of 1 hr.
e When AA incorporated: AA of 100 iterations after every one hr. (convergence = 0.2)

Y-emittance (nm) @ Linac exit vs. time (hrs.)
Mean of 10 seeds
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« 30 differen

t GM seeds

e Case2: GM of 10 hrs. in step of 1/2 hr.
* When AA incorporated: AA of 100 iterations after every one hr. (convergence = 0.2)

Y-emittance (nm) @ Linac exit vs. time (1/2hrs.)
Mean of 30 seeds
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In half an hour of GM,
emittance dilution increases
by as much as ~ 5 nm b/w

the subsequent AA iterations,
which implies that AA will
have to be done at least of
this order or better!
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GM — Different Models

BPM resolution = 0.2 um

. GM Model - A GM Model - B
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Lucretia — DFS Implementation

1:1/DFS implementation in Lucretia — Identical implementation in LIAR & Lucretia

Curved ILC BCD Lattice with GKICK, All nominal misalignments (including Girder Pitch),
1st 7 BPMs have 30mm offset w.r.t. survey line; 50 seeds
Normalized corrected emittance vs. BPM index
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LIAR - Lucretia transition - getting ready for the Cradle-to-grave simulation
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Summary

v Effect of Adaptive Alignment (AA) has been studied — AA is extremely helpful
In reducing the emittance dilution in case of Quad offsets

v' AA is sensitive to large value of BPM offsets w.r.t. Quad, Cavity Pitch and
BPM resolution

v In the presence of Ground Motion, AA is very helpful in keeping emittance
dilution sufficiently low, both for perfect lattice or Dispersion Free Steered
Lattice

v' AA is sensitive to BPM resolution, but if we average over sufficiently large
bunches, then we can still get very good performance from AA after GM

v Further work with the understanding of
» for how long can we run with AA before restoring to Gold Orbit

= Comparison with regular 1-to-1

= Other dynamic effects

Jan.8-11, 2007 KIRTI RANJAN




SPOTSIZE STABILIZATION STUDIES FOR THE TESLA BEAM

DELIVERY SYSTEM

A Sery

The qualitative dependence of the beam disper-
sion when the “one-to-one” orbit correction is applied

.::;;,2 ) o {-::rﬁpm +ATL)N + AATL N3

where [V is the number of quadrupoles in the linac, L 1s the
quadrupole spacing, 7' is the time since the moment of per-
fect alignment. AT 1s the time interval between successive
corrections. oy, 15 the BPM resolution. From the other
hand. if the adaptive alignment is applied, we have

(n?) {r:rﬁlm1 + AATL)N?

We see the obvious fact that for the “one-to-one™ orbit cor-
rection the beam dispersion grows with time. since the al-
gorithm does not realign quadrupoles. in contrast to the
adaptive alignment where the beam dispersion does not in-
crease with time.
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Figure 4: Normalized vertical beam size (7, ), for the
TESLA BDS versus AT for different procedures applied

solely. The second axis assumes A = 107 pm?>s~
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