* Review CAIN polarization dependency of coherent processes
* |ntroduce new coherent Breit-Wheeler process

* Discuss simplifications of analytic forms and implementation
into CAIN
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CAIN polarization effects

* Coherent pair production
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CAIN- final helicity of coherent pairs

Longitudinal helicity of Electron beam

before and after IP

® CAIN has switches to
turn on and off

Number (macroparticles)

coherent pair

production

Sy (spin vector)

Transverse helicity of Electron beam
before and after IP

* final polarization
states of incoherent
pair processes not

—_
[Z2
@D
o
=
[s2]
[=
o
=
(&)
(43
S
=
sl
D
e
=
=
=

computed

Sy (spin vector)

Slide 3 Eurotev Daresbury 7.1.2007



currently in CAIN
do mTmp

T A :
doos(f) 2 W

h 1s product of circular
polarizations of 1nitial

photons

* full treatment due to ;
do 0

Baier & Grozin
hep-ph/0209361

— F are simple functions of scalar products

LF EE LT

deos(0)d ¢ 452 A

- s,X,y are Mandelstam 1nvariants
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* Look for a solution of the form: v (x, p)=u_(p)F ()

* Substitution of the general solution for ¢, yields a first order
d.e. whose solution can be expanded in powers of k,A°

W, (x,p)=[1+——k Kexp| F (k,A%) e ”u_(p)

2(kp) S

* Now look for simplifications by physical considerations
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W, (x,p)=[1+——»k #exp|F(x.p.k,A%)]e ™ u_(p)

2(kp)
make Fourier transform to get

linear term In X

for ILC parameters
n term interpreted as a

contribution from n external

field photons (n can be -ve!) so for large Ep second
v2term is a shift in electron

e ‘Ae‘

m

~ 1

R 0.08
144}

term can be neglected
momentum
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Beam.sstrahlung photon
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CBW cross-section with simplifications

d()' dn

BW

F

n~

d dr (nwiw1)2+F2]2

* Can write CBW diff x-section as the ordinary BW
diff x-section times a numerical factor

* Jower bound of integration is determined physically -
¢ of m energy must be at least 2x0.511 MeV

* Fis a product of Airy functions for crossed beam
field (Bessel functions for circ polarized field)

* [ is aresonance width determined from a self energy

calculation
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Synchrotron
E ~ Photon

L

Cross—section

(a) Non—azimuthally symmetric o

AiZ(z) for n=1, o /m=1000

* Analytic solutions available
for some f(cp) -

Albright, ] Phys A 10(4) 485
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Calculation of Resonance widths

* The Electron Self Energy in external
CIRCULARLY POLARISED e-m field
originally due to Becker & Mitter 1975 for
low field intensity parameter V=(ea/m)>. Has
been recalculated for general v

# ESE in external CONSTANT CROSSED field
18 due to Ritus, 1972

* Optical theorem: the imaginary part of the
ESE is the same form as the Sokolov-Ternov
equations
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Things to do

* include extra polarization dependent terms with
existing CAIN processes

* parametrise Volkov solution numerical factor for
coherent Breit-Wheeler (CBW) process

* include simplitfied CBW cross-section as
correction to incoherent Breit-Wheeler in CAIN

* determine extent of the contribution to final
helicity

* prepare full calculation of CBW for inclusion
Slide 11 Eurotev Daresbury 7.1.2007



