Some 'news' from depolarization effects in beam-beam interaction

- Physics requirements on polarization
 - accuracy and open questions
- Spin Precession: T-BMT equation
 - anomalous magnetic moment of the electron
 - quasiclassical approximations
- Incoherent processes
 - equivalent photon approximation
 - validity for bremsstrahlung
- Conclusions and outlook

Physics requirement

- Goals: Polarized beams needed to
 - analyze the structure of all kinds of interactions
 - improve statistics: enhance rates, suppress backgrounds
 - detect new physics via deviations from SM predictions in high precision measurements
- Needed accuracy
 - ightharpoonup expected: for most physics studies $\Delta P/P=0.5\%$ sufficient; for precision measurements $\Delta P/P<0.1\%$ required
 - → polarization@IP = lumi-weighted polarization ≠ polarization@polarimeter
- Plans for the ILC
 - downstream polarimeter at z~147 m
 - \rightarrow expected: Compton polarimetry can provide $\triangle P/P < 0.5\%$...,0.25%, up to ...?

(Some) open questions

- What are the possible systematical uncertainties?
 - SLC experience: analyzing power calibration, detector linearity, chromatic effects, etc.
- Helicity flipping of both beams:
 - needed to get systematics under control?
 - needed for physics purposes?
 - at which frequency?
- Analysis of possible depolarization effects:
 - needed to derive the lumi-weighted polarization precisely
 - since ΔP/P<0.5% required even small depolarization effects have to be known
 - major component in beam-beam interaction: spin precession (T-BMT) and spinflip (Sokolov-Ternov) processes
 - take into account coherent and incoherent (background) processes

a) Spin precession

- PPARC review committee: check if used equations in CAIN are applicable!
 - validation of T-BMT equation
- What has been used?

$$\frac{d\mathbf{S}}{dt} = -\frac{e}{m\gamma} \left[(\gamma a + 1)\mathbf{B}_T + (a+1)\mathbf{B}_L - \gamma(a + \frac{1}{\gamma + 1})\beta \mathbf{e}_v \times \frac{\mathbf{E}}{c} \right] \times \mathbf{S}.$$

- \rightarrow 'a' is anomalous magnetic moment of electron a=(g-2) / 2= α /2 π + ...
- higher-order effect, radiative corrections to eeγ vertex
- → measured up to accuracy of 10-11
- Due to strong fields (beamstrahlung), a is function of field
 - unpublished expression from V. Baier used.....
 - has been checked now

Spin precession -- some news

Baier derived

- a) expression for anomalous moment of e in a medium
- use ansatz in perturbation theory
- relates spin-dependent part of corrections with magn. moment
- b) get expression valid in beam-beam interactions
- use this expression for the case that 'no' scattering happens
- that has been used in CAIN
- c) used approximation: quasi-classical approximation
- (one) condition: change of momentum due to external field has to be slowly
- applicable if: Larmor radius in magn. field much larger than particle wavelength
- ok for our case, even although fields are strong

Expression for anom. magn. moment

Quasi-classical approximation in our case

- particle wavelength in our cases:
 - → ~h/p
- Larmor radius:
 - typical magnetic field in the bunches O(kT)
 - → radius ~ pc / eB
 - much larger than characteristic wavelength
 - used approximation seems to be ok in our case
- used equation in CAIN now obvious

b) incoherent processes

- Become important/dominant for high energies!
- For beam-beam interaction: four incoherent processes as 'background'
 - → Breit-Wheeler: γ + γ → e+ + e- (real photons)
 - Bethe-Heitler: $e \pm + \gamma$ \rightarrow $e \pm + e + e + e becomes in EPA: <math>\gamma^* + \gamma$ \rightarrow $e^+ + e^-$
 - → Landau-Lifshitz: e++e- → e++e-+e+ + e-+e+ + e-+e+
 - Bremsstrahlung: e+ + e- → e+ + e- + γ
 - becomes in EPA: $e++y^* \longrightarrow e++y$

Equivalent photon approximation -- intro

- Idea: approximate virtual photon via a real photon with:
 - mass on-shell
 - only transversely polarized
- Approximation ok, if dynamical cut-off exists
 - → limes for q2 → 0: $\sigma_S \sim q^2$ → 0 $\sigma_T \sim \sigma_y$
- Approximation ok, if spin-density matrix is taken into account:
 - expand amplitude in 'transverse' and 'scalar' photon contribution
- Cross section can then be expressed:
 - \rightarrow d $\sigma_{EPA} \sim \sigma_{\gamma}$ dn(w, q2)
- Check for every process whether EPA is applicable!
 - Bethe-Heitler and Landau-Lifshitz in principle ok

CAIN: status with incoherent processes

- Bremsstrahlung process cannot be approximated via EPA!
 - terms proportional ln(k²/me²) neglected!
 - has to checked in our energy region
 - **→** in CAIN: bremsstrahlung only included via EPA
- ullet EPA only in proper use, if polarization of virtual γ has been taken into account
 - in CAIN no polarization of photons for BH, LL and Bremsstrahlung process
- No correlation between polarization of final particles included
 - can only be done if for all processes spin-density matrix has been calculated...
 - concerning ILC sets: incoherent processes are dominant!
- No secondary processes included
 - see ...

Some news concerning this part

- Breit-Wheeler process well under control
 - Tony did second order QED calculation in his thesis
 - see next talk
- Other processes
 - → BH and LL later on in a second step in EPA
 - → including full spin-density matrix ...
- but: bremsstrahlung contribution has to be derived without EPA
 - i.e. include the missing log terms and the spin

Summary and Outlook

- T-BMT and anomalous magnetic moment of the electron
 - managed to recalculate Baiers expression
 - seems to be ok for our cases
- Incoherent processes
 - Spins for BW, BH and LL
 - Needed corrections for bremsstrahlung (logs and spins)
 - see also Tony's talk
- Still to be done: CAIN update
- Still to be done: detailed polarization simulations
 - **→** for some physics examples: simulations including 'full' expected systematics
 - taking into account variable flipping frequency
 - not very urgent but should be done in time ...