Pad occupancy in LDC TPC with TDC-based readout electronics

Alexander Kaukher Universität Rostock

LCWS 2007, Hamburg

TPC readout electronics with Time-to-Digit Converter

Measure charge of signals

Charge-to-time convertion with ASDQ: I

ASDQ: Amplifier Shaper Discriminator with charge (Q)-measurement

• Charge capacitor with input signal, discharge with a constant current

Measure arrival time of signals

Measure charge of signals

Charge-to-time convertion with ASDQ: II

A possible design of Time-to-Digit Converter

Memory size ? Number of signals to be stored: pad occupancy

A.Kaukher LCWS 2007, May 31

TPC readout for ALICE TPC: ALTRO chip

CERN ALTRO chip: Layout and Package

Laurent Dugoujon

Larger memory needs larger area of chip

LEGS TPC: readout electronics on the end-plate

front end ASICs

Silicon wafers can be thinned down to 20 um

"Three-dimensional integrated circuits" IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

GUINEA-PIG: TESLA linac parameters (close to nominal parameter set of the ILC RDR)

369 ns bunch spacing

"Afterglow"

Time of appearance of a hit on a pad is calculated

Hit overlap is processed with knowledge of QT-characteristic

Simple integration:

Energy deposits from all hits within 50 ns time window are summed, pulse width set accordingly

Dead time is variable

hits with very large energy deposits "block" later arriving hits

Pad occupancy

Pad occupancy

64 pads (in a pad-row) are served by a single chip

~800 hits per chip per 128 BX

For a bunch train this would give: 2625 (BX per train) / 128 BX * 800 ~ 20 000 TDC words

TDC-based electronics offers an interesting feature of data reduction *though performance might degrade, for example, the double pulse resolution*

Simple electronics, low power, low material budget Number of hits per 128 BX (with common memory TDC): ~ 800 (max.) *number of hits per train* ~ 20 000

Even if one takes 10x safety factor, the size of the memory is still small The *full* bunch train can be calculated easier with GRID, if necessary

