MarlinTPC: Towards a common TPC software framework

Jason Abernathy¹, Klaus Dehmelt², Ralf Diener³, Christian Hansen¹, Matthias Enno Janssen², Martin Killenberg⁴, Astrid Münnich⁵, Peter Wienemann⁴

¹University of Victoria ²DESY ³University of Hamburg ⁴University of Bonn ⁵RWTH Aachen

International Linear Collider Workshop 2007 May 29 – June 04, 2007 Hamburg, Germany

Status quo

- Many different TPC simulation, reconstruction and analysis packages have been developed
- Varying motivations for writing them
- Often similar codes, but they use different data formats, coordinate systems, units, etc.
- Most are monolithic programmes
- Exchanging code or data for cross-checks or to avoid double work can be time consuming and error-prone

Agreement

Held a TPC software workshop at DESY in June 2006, trying to improve on the situation

Outcome of long discussions:

Proposal for an ILC TPC data stream

Ties Behnke^a, Maximilien Chefdeville^b, Frank Gaede^a, Christian Hansen^c, Matthias Enno Janssen^a, Alexander Kaoukher^d, Martin Killenberg^e, Jason McGeachie^c, Astrid Münnich^e, Adrian Vogel^a, Michael Weber^e, Peter Wienemann^f

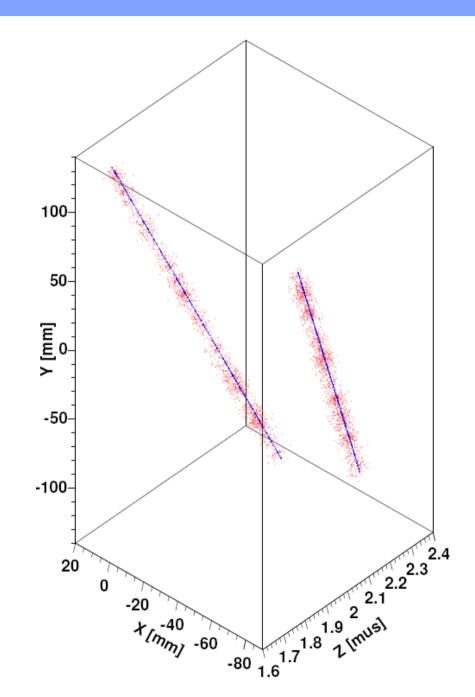
^aDESY
^bNIKHEF
^cUniversity of Victoria
^dUniversity of Rostock
^eRWTH Aachen
^fUniversity of Freiburg

Draft from July 3, 2006

Abstract

This document proposes a TPC data flow model for use during ILC detector R&D studies. It is based on LCIO data structures and Marlin as analysis and reconstruction framework.

MarlinTPC


- Goal: provide complete simulation, reconstruction and analysis framework using the data model described in the document
- Collection of existing and new algorithms in a single modular framework
- Modularity simplifies re-usability
- Based on ilcsoft tools widely used in ILC community:
 - LCIO: underlying model for transient and persistent data
 - MARLIN: modular analysis and reconstruction framework
 - GEAR: store and access geometry information
 - LCCD: conditions database package

Simulation

 Imported Astrid Münnich's GEMTPCSimulation package into MarlinTPC

Performs

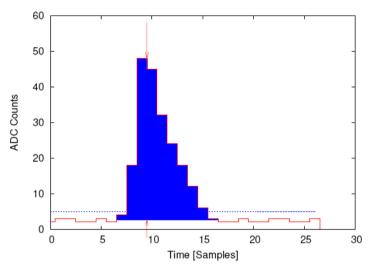
- parametrised primary charge deposition
- drift with diffusion
- detailed parametrised simulation of amplification and charge transfer in GEM stack
- digitisation (providing
 lcio::TrackerRawData)

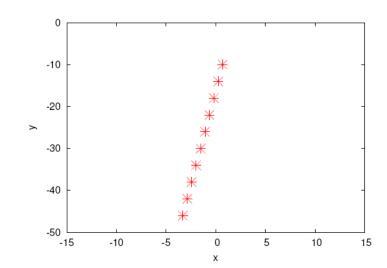
Reconstruction

Reconstruction chain (from document):

Processor name	input/output collection name
	TPCRawData
${\bf Tracker Raw Data 2 Data Converter}$	done
	TPCConvertedRawData
PedestalSubtractor	done
Channel By Channel Corrector	missing
LinearityCorrector	missing
TimeShiftCorrector	missing
	TPCData
PulseFinder	done
$\operatorname{ChannelMapper}$	done
GainCorrector	missing
	. TPCPulses
$\operatorname{HitFinder}$	done
HitPRFCorrector	under development
	TPCHits
TrackFinder[Method]	done
	TPCSeedTracks
TrackFitter[Method]	under development
	TPCTracks
	TrackerRawData2DataConverter PedestalSubtractor ChannelByChannelCorrector LinearityCorrector TimeShiftCorrector PulseFinder ChannelMapper GainCorrector HitFinder HitPRFCorrector TrackFinder[Method]

Only the correction processors are still missing

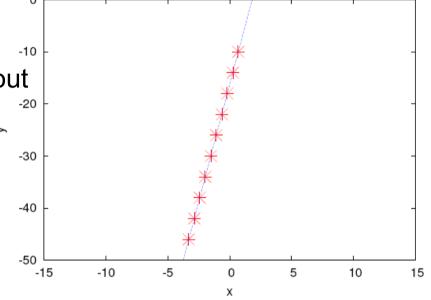

Pulse and hit finder


PulseFinder:

- handles positive and negative polarity signals
- can be run on zero and non-zero suppressed data
- pre and post samples included in pulses
- threshold in terms of standard deviations from pedestal calculator
- no correct handling of double pulses yet

HitFinder:

- still simple clustering algorithm without proper treatment of double tracks
- so far only RectangularPadRowLayout



Track finder

TrackFinderLinearRowBased:

- simple hit based track finder
 assuming RectangularPadRowLayout
- presently only works for straight tracks (or small curvature)
- provides track parameters from χ^2 fit, can be used as seed for track fitter

In the pipeline

- Global likelihood based track fit processor
 - algorithm as developed at University of Victoria
- Analysis processor
 - providing all information as formulated in the conclusion of the first ILC TPC Analysis Jamboree in 2006: resolution with geometric mean method, resolution with respect to reference track, bias plots, etc.
- Event display
 - extension of CED
- More sophisticated track finding algorithm
- Make all relevant processors work with Rectangular-PadRowLayout and FixedPadSizeDiskLayout
- Pad response function corrector and hit based track fitter
 - algorithm as developed at DESY

Summary and outlook

- Goal of MarlinTPC is to provide a common modular TPC simulation, reconstruction and analysis framework
- Most important processors of reconstruction chain are already available (though still partly with limited functionality)

Plans:

- Test MarlinTPC with real prototype data (not simulation)
- Include other readout technologies (TDCs, Timepix) in the data model and subsequently in MarlinTPC code. Where to switch to the conventional reconstruction chain?
- In the long run, merge code with full detector software (MarlinReco)

Further contributors or beta testers are highly welcome

More information

Homepage:

http://www-flc.desy.de/ilcsoft/ilcsoftware/marlintpc

Mailing list:

https://lists.desy.de/sympa/info/ilcsoft-marlintpc

User workbook:

https://twiki.cern.ch/twiki/bin/view/ILCTPC/MarlinTPC

Subversion repository:

svn://pi.physik.uni-bonn.de/MarlinTPC/trunk