$e^+e^- \rightarrow 3$ jets at NNLO

Thomas Gehrmann

in collaboration with: A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich

Universität Zürich

LCWS/ILC Workshop DESY 2007

Observing "free" quarks and gluons at colliders QCD describes quarks and gluons; experiments observe hadrons

- describe parton \longrightarrow hadron transition (fragmentation)
- define appropriate final states, independent of particle type in final state (jets)

Jets

- experimentally: hadrons with common momentum direction
- theoretically: partons with common momentum direction

Jet Observables

Jet Observables

Formal requirements on jet observables

G. Sterman, S. Weinberg Jet observable defined using *n*-particle final state: $O_n(p_1, \ldots, p_n)$

soft limit:
$$O_n(p_1, p_2, \ldots, p_n) \xrightarrow{E_1 \to 0} O_{n-1}(p_2, \ldots, p_n)$$

Jet observables which fulfil these criteria are infrared-safe

Jet algorithms

measurement and recombination procedure to combine nearby particle momenta into jets, e.g. JADE-algorithm

recombine pair (*ij*) with lowest $s_{ij} = (p_i + p_j)^2 < s_{cut}$

other jet algorithms: Durham (k_T) , Cambridge, Cone

Jet Observables

Event shape variables

assign a number x to a set of final state momenta: $\{p\}_i \to x$

can be used as precision measurement of α_s : (based on NLO)

 $\alpha_s(M_Z) = 0.1202 \pm 0.0003(\text{stat}) \pm 0.0009(\text{sys}) \pm 0.0009(\text{had}) \pm 0.0047(\text{scale})$

Jets in Perturbation Theory

Theoretically

Partons are combined into jets using the same jet algorithm as in experiment

Current state-of-the-art: NLO Need for higher orders:

better matching of parton level and hadron level jet algorithm

Ingredients to NNLO $e^+e^- \rightarrow 3$ -jet

Two-loop matrix elements

$|\mathcal{M}|^2_{2}$ -loop,3 partons

One-loop matrix elements

Tree level matrix elements

explicit infrared poles from loop integrals

L. Garland, N. Glover, A. Koukoutsakis, E. Remiddi, TG; S. Moch, P. Uwer, S. Weinzierl

explicit infrared poles from loop integral and implicit infrared poles due to single unresolved radiation Z. Bern, L. Dixon, D. Kosower, S. Weinzierl;

J. Campbell, D.J. Miller, E.W.N. Glover

implicit infrared poles due to double unresolved radiation

K. Hagiwara, D. Zeppenfeld;F.A. Berends, W.T. Giele, H. Kuijf;N. Falck, D. Graudenz, G. Kramer

Infrared Poles cancel in the sum

Numerical Implementation

Structure of $e^+e^- \rightarrow 3$ jets program:

Numerical Implementation

Antenna subtraction

NLO: M. Cullen, J. Campbell, E.W.N. Glover; D. Kosower; A. Daleo, D. Maitre, TG NNLO: A. Gehrmann-De Ridder, E.W.N. Glover, TG

- **s** construct subtraction terms from physical $1 \rightarrow 3$ and $1 \rightarrow 4$ matrix elements
- each antenna function interpolates between all limits associated to one or two unresolved partons
- Integrated subtraction terms cancel infrared pole structure of two-loop matrix element
 - S. Catani; G. Sterman, M.E. Yeomans-Tejeda

Checks

- cancellation of infrared poles in 3-parton and 4-parton channel
- convergence of subtraction terms towards matrix elements along phase space trajectories
- distributions in raw phase space variables
- \bullet independence on phase space cut y_0

Event shapes at NNLO

NNLO expression for Thrust

$$(1-T)\frac{1}{\sigma_{\text{had}}}\frac{\mathrm{d}\sigma}{\mathrm{d}T} = \left(\frac{\alpha_s}{2\pi}\right)A(T) + \left(\frac{\alpha_s}{2\pi}\right)^2\left(B(T) - 2A(T)\right) \\ + \left(\frac{\alpha_s}{2\pi}\right)^3\left(C(T) - 2B(T) - 1.64A(T)\right)$$

with LO contribution A(T), NLO contribution B(T)

R.K. Ellis, D.A. Ross, A. Terrano

Results

NNLO coefficient C(T) of thrust

Numerical computation

zBox1 and zBox2 supercomputers

zBox1

- 288 processors,2.2 GHz AMD Athlon
 - 0.57 TFlops
- built in-house from off-the-shelf components J. Stadel, B. Moore

zBox2

- 500 processors,2.6 GHz Opteron 852
- 5.2 TFlops
- built by Sun microsystems

used mostly by our computational astrophysics group

Results

NNLO thrust distribution

- numerical integration errors after 1 week on zBox1/zBox2
- NNLO corrections sizable, even at ILC energies
- may have to revisit hadronisation corrections
- small 1 T: two-jet region, need resummation

Results

NNLO thrust distribution

 ${}$ varied $\mu = [M_Z/2; 2\,M_Z]$

- NNLO on the edge of NLO theory uncertainty
- renormalisation scale dependence decreases considerably
 - started comparison with LEP data $\longrightarrow lpha_s$

Summary and Conclusions

- completed calculation of NNLO corrections to thrust distribution in e^+e^- annihilation
- constructed parton-level event generator, based on antenna subtraction method
- \checkmark corrections sizable, possible impact on α_s
- comparison with data just started
- next steps: other event shapes, three-jet rate