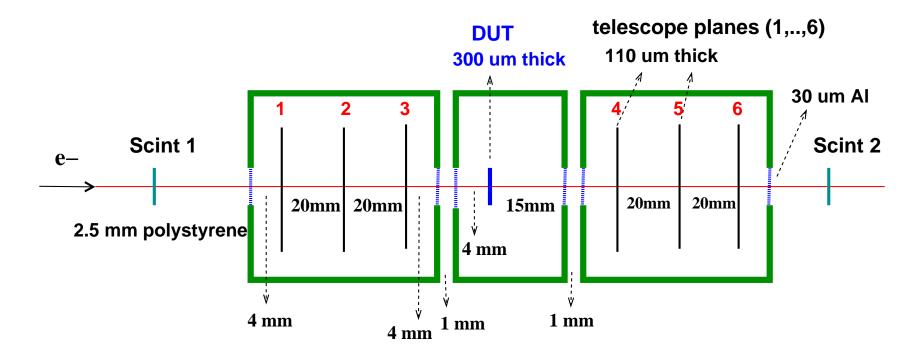


Simulation Study for EUDET Pixel Beam Telescope using ILC Software

Linear Collider Workshop, Hamburg, May/June 2007

Tatsiana Klimkovich DESY

- Telescope geometry
- Software tools
- Comparison of different telescope geometries
- Testing alignment procedures



EUDET Pixel Beam Telescope

- JRA1: Test beam infrastructure Comprises large bore magnet (B<1.2 Tesla) and pixel beam telescope
- Purpose of telescope: precise track reconstruction used for pixel sensors, as well as for large volume tracking devices (e.g. TPC)
- ullet Should have very high precision (<3 μ m)
- Suitable for different test beam environments:
 - DESY: electrons up to 6 GeV/c
 - CERN: pions 100-120 GeV/c
- For telescope planes use CMOS sensors developed by IPHC-Strasbourg
- DAQ development: Switzerland, Italy, France, Germany, UK
- Is being assembled at DESY, first beam tests start in one week

Telescope geometry

- Electrons: 1-6 GeV/c
- \bullet Assumed intrinsic resolution of a telescope plane is 3 $\mu {\rm m}$ (hit positions are smeared)
- lacktriangle Three separate shielding boxes \Longrightarrow flexible setup
- For 2- and 4-plane geometries the closest to the DUT planes are considered

Software Tools

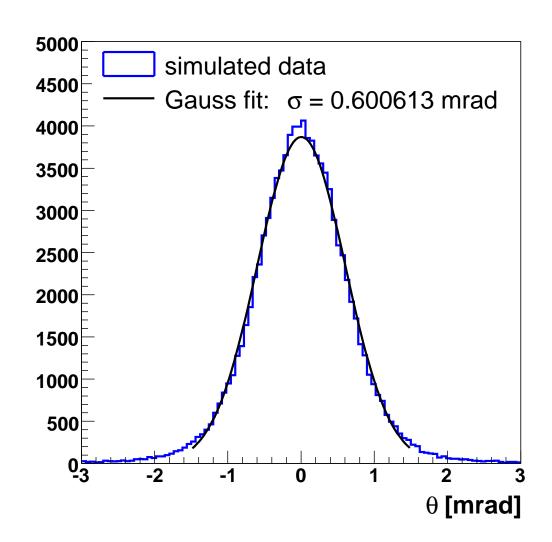
- Simulation: Mokka (based on Geant 4)
 - New geometry driver EUTelescope has been created (on the way to be included into official Mokka release)
 - Class TRKSD00 is used for telescope and DUT sensitive detectors
 - All parameters of the model are stored in MySQL database
 - Output: LCIO format files
 - Stored information: hit positions, deposited energy, ...
- Telescope geometry interface (within Gear) is implemented (will be included into next Gear release): detector "SiPlanes" of 2 types: TelescopeWithDUT and TelescopeWithoutDUT
- Analysis: Marlin, Root, C++
- Simulated 50000 events for 2, 4 and 6 planes (no magnetic field)

Validation of Multiple Scattering model

The width of the projected angular distribution is defined as

$$heta_0 = heta_{
m plane}^{
m rms} = rac{1}{\sqrt{2}} heta_{
m space}^{
m rms}$$

For small scattering angles Gaussian approximation is used:


$$heta_0 = rac{13.6 ext{ MeV}}{eta cp} z \sqrt{rac{x}{X_0}} \left[1 + 0.038 \ln \left(rac{x}{X_0}
ight)
ight]$$

- p, βc , z are momentum, velocity and charge number of the incident particle
- $oldsymbol{x/X_0}$ is the thickness of the scattering medium in radiation lengths To check the validity of MS description:
 - floor Simulate silicon wafer of 300 μ m thickness
 - Shoot 1 GeV/c electrons (100000 events)
 - ullet Look at the projection of the scattering angles $oldsymbol{ heta}$

Projection of scattering angle

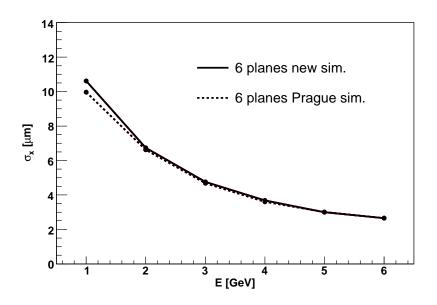
Theory: $\theta_0 = 0.602$ mrad

Analysis procedure

- Find a position of the intersection of the track with the DUT $(x_{
 m pred},\ y_{
 m pred})$
- Find DUT residuals:

$$r_{x \text{ DUT}} = x_{\text{pred}} - x_{\text{DUT}}$$

$$r_{y \text{ DUT}} = y_{\text{pred}} - y_{\text{DUT}}$$


where x_{DUT} and y_{DUT} are hits in the DUT

 $lue{}$ Fit Gaussian to residual distributions and find σ_x and σ_y

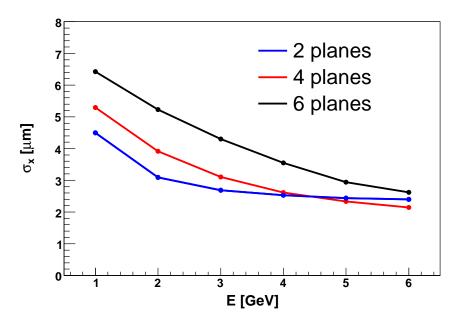
Geant 4 (Prague) and Mokka simulations

- The results look similar
- In this simulation DUT is shifted right from the center in comparison with picture on slide 3

Track selection

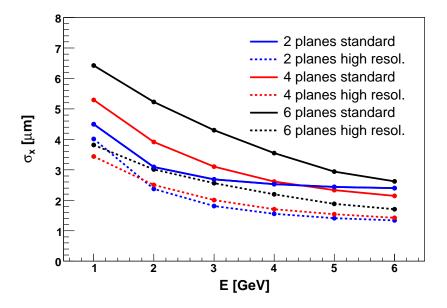
- $\chi^2_{
 m track} <$ 30 for 6 plane geometry $\chi^2_{
 m track} <$ 10 for 4 and 2 plane geometries
- track slope < 2 mrad</p>

$$ullet$$
 distance = $\sqrt{(x_{
m DUT}-x_{
m pred})^2+(y_{
m DUT}-y_{
m pred})^2}<$ 200 μ m


Yield

Momentum	2 planes	2 planes 4 planes	
1 GeV/c	78%	27%	21%
2 GeV/c	97%	71%	67%
3 GeV/c	99%	86%	87%
4 GeV/c	99%	91%	94%
5 GeV/c	100%	94%	97%
6 GeV/c	100%	95%	98%

Comparison of different geometries


- At low energies contribution of multiple scattering (MS) from telescope planes is big =>> 2-plane geometry gives better results
- With increasing energy 4-plane geometry is an optimal variant
- Here track fit: straight line \Rightarrow should use fit taking into account MS

Comparison with high resolution setup

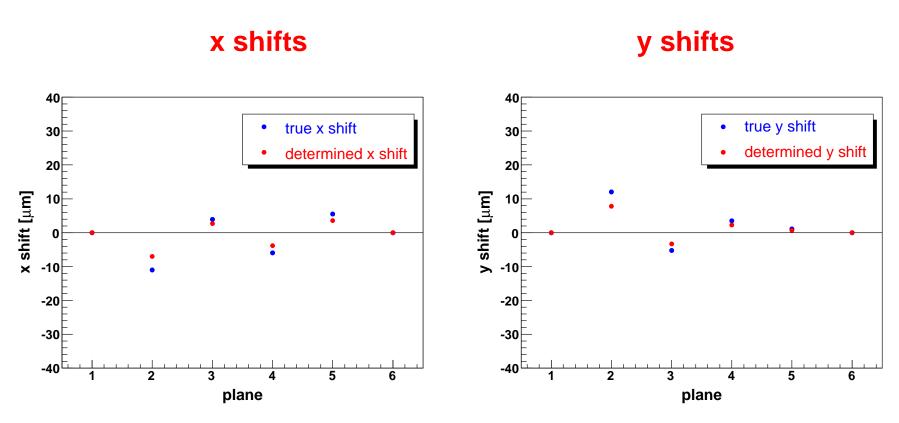
- f L Standard setup: all telescope planes have 3 μ m intrinsic resolution
- High resolution setup: two telescope planes closer to the DUT have 1.5 μ m intrinsic resolution (with smaller pixel size); all other planes 3 μ m

The configurations with high resolution sensors for closest telescope planes give the best results

Simulation of pion beam 100 GeV/c

Assumed telescope plane resolution 3 μ m

With increasing energy MS effects become negligible
 6-plane geometry is better even after fitting straight line



Alignment package Millepede

- When detector is ready a proper software alignment will be an important issue for telescope precision
- Test alignment procedures with simulated data
- Alignment package Millepede is developed by Volker Blobel (Uni Hamburg)
- Used in H1, ZEUS, CMS for tracker alignment
- Aligns all planes simultaneously
- Based on linear least squares fits
- Local parameters: track parameters (here track slopes and curvatures)
- Global parameters: alignment coefficients (here x and y shifts)
- Simulated 50000 events (6 GeV electron beam) for 6-plane telescope configuration without DUT

First try to use Millepede

Should investigate more and play around with constraints, etc.

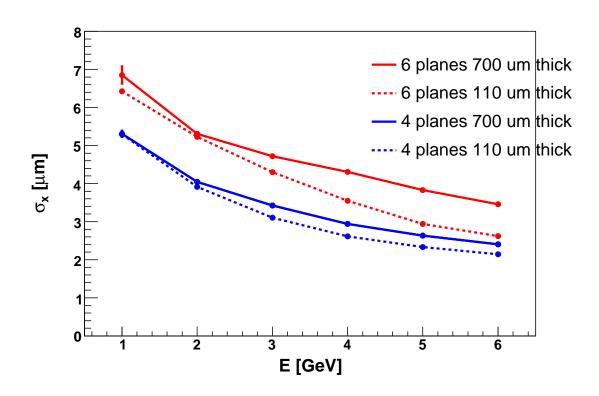
Conclusions

- Simulation of pixel beam telescope is done using ILC software
- Gear interface for beam telescope is almost complete. It is tested and in use by telescope software group
- For high beam momenta 6-plane geometry gives the best results
- At low beam momenta multiple scattering plays a big role
- Alignment package Millepede has demonstrated promising results. More checks are needed
- The results of simulation study are summarised in EUDET memo EUDET-Memo-2007-06

- To make Mokka code for telescope simulation being ready for next Mokka release
- Implement track fit taking into account multiple scattering
- Make simulation with magnetic field and modify track reconstruction
- Implement alignment for plane rotations
- Analysis software group effort: develop common analysis framework for beam telescope data using existing ILC software (use experience and help from ILC software community)
- Getting ready for beam tests at DESY in one week!

Non-thinned sensors

- Non-thinned sensors (700 μ m) may be used for "demonstrator" phase
- Simulate 4- and 6-plane geometries


Yield (after cuts mentioned before):

	4 planes		6 planes	
Momentum	110 μ m	700 μ m	110 μ m	700 μ m
1 GeV/c	27%	5%	21%	2%
2 GeV/c	71%	35%	67%	21%
3 GeV/c	86%	60%	87%	48%
4 GeV/c	91%	75%	94%	68%
5 GeV/c	94%	83%	97%	80%
6 GeV/c	95%	87%	98%	87%

Non-thinned sensors

Can get reasonable precision by adjusting selection cuts

