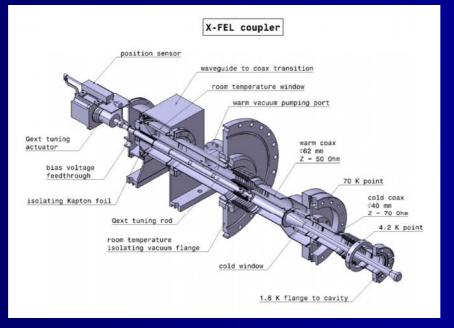


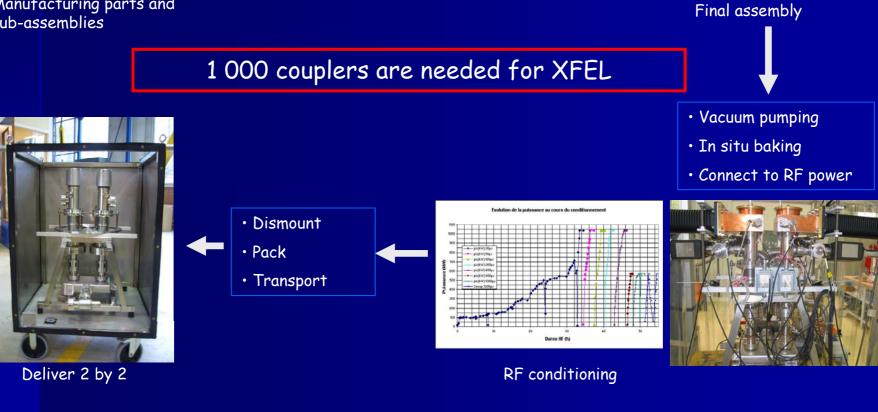
111

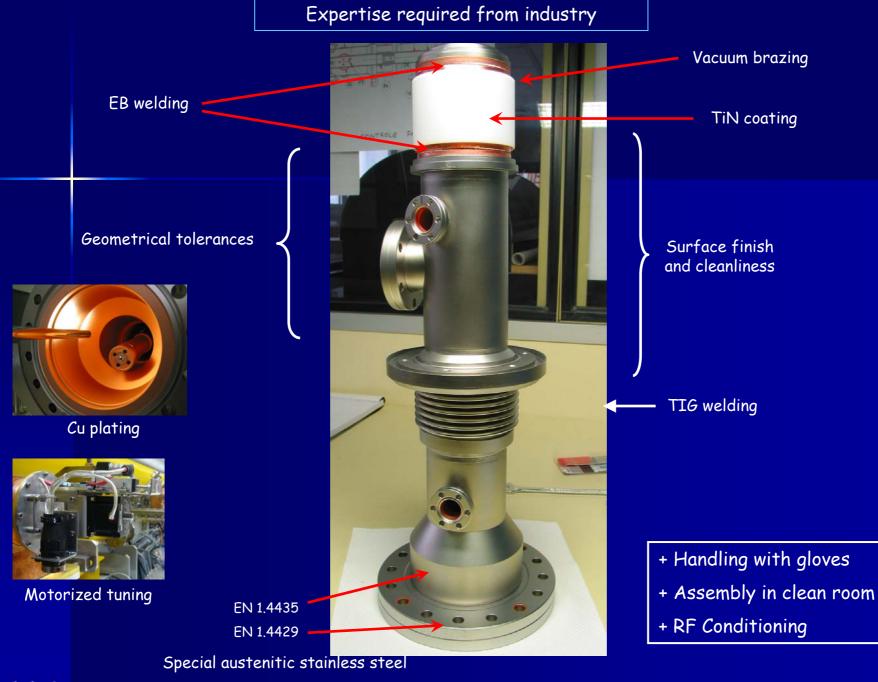


Industrialization process for XFEL Power couplers and Volume manufacturing

TTC meeting at Fermi lab, April 2007 Serge Prat / LAL - Orsay

Scope of delivery




Manufacturing parts and sub-assemblies

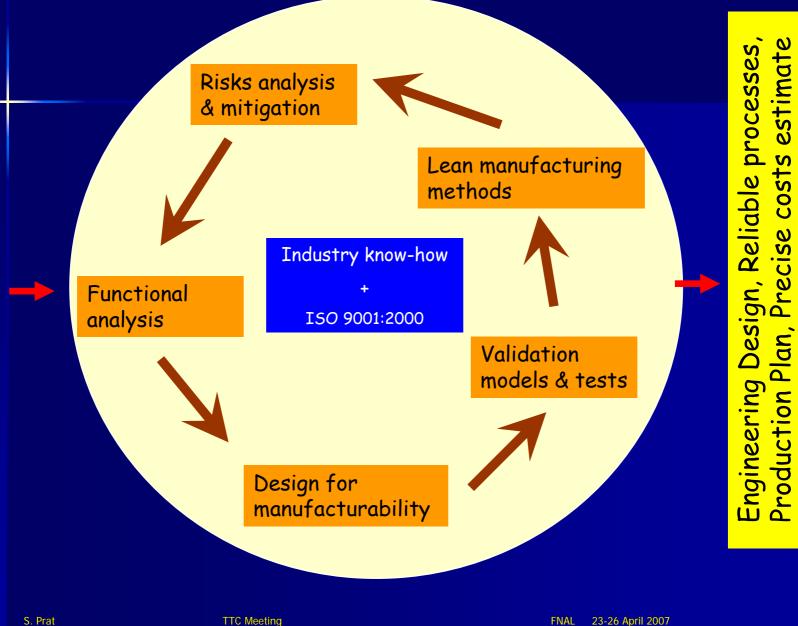
In ISO 6 and ISO 4 clean room:

- Cleaning
- pre-assembly
- Vacuum oven outgassing
- Final assembly on test stand

S. Prat

TTC Meeting

FNAL 23-26 April 2007


Industrialization studies:

Why?

Start with:	Prototypes (40 Couplers)	<u>Quality:</u>	- uneven - NC, several anomalies		
Indus	trialization	<u>Manufacturing:</u>	 long and difficult lack of procedure only a few people have the competence 		
proce	process		<u>High cost</u>		
		<u>Quality:</u>	- equal for all items - reliable		
End objective:	Large series XFEL: 1 000 Couplers ILC: 20 000 Couplers	<u>Manufacturing:</u>	 reliable regular process written procedures standard competence 		
		Lower cost:	- 60% cost decrease		
S. Prat	TTC Meeting		FNAL 23-26 April 2007		

ll

prototypes 2 Manufacture

estimate

costs

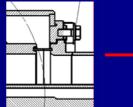
cise

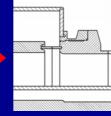
Some results

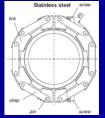
Functional analysis

- Small thermal emissivity coefficient \rightarrow Polish the antenna (gain in radiative thermal power)
- Thermal model → Cu rings at 4K point can be attached on thicker tube instead of bellows, brazed or glued
- Big flange on vacuum vessel: 12 holes are enough instead of 24
- Change some materials in actuator for radiation resistance
- Choose PPS for connectors and Kapton for cable insulation
- Floating big flanges must be supported

Design for manufacturability


- · Choose deformation techniques instead of machining: deep drawing, spinning, pull-out
- Optimize the process for vacuum brazing by use of special tooling: *adapt tolerances & thermal expansion*
- Decrease number of parts and junctions:




Lean manufacturing

S. Prat

- Use RF seals for better electrical contact at waveguide interface box
- Use chain clamp instead of screws for assembly

TTC Meeting

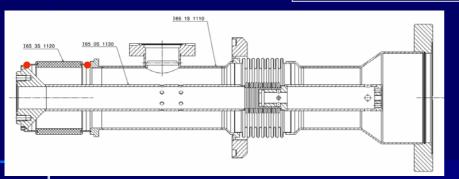
FNAL 23-26 April 2007

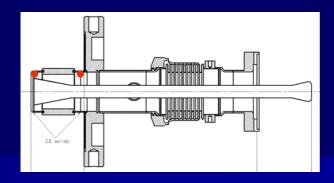
Materials damaged by 1 MGy radiation dose No data for these materials

Actuator Materials List				
Description	Base Material	Coating	Additional Material	
front endbell	aluminum	Electrophoresis Coating		
rear endbell	aluminum	Electrophoresis Coating		
ball bearing	52100 chrome steel		Chevron SRI2 lubricant	
linear insert	brass			
linear nut	30% glass filled polyester			
magnet	sintered BdFeB	Electrophoresis Coating		
rotor stack	silicon steel lamination		aluminum rivet	
spring washer	carbon steel			
spanner nut	aluminum	black anodize		
e-ring	spring steel	black phosphate		
captive sleeve	aluminum	black anodize		
molded sleeve	30% glass filled polybutylene terephthalate (PBT)			
end stop	303 stainless steel			
pinion	303 stainless steel			
assembly screw	mild steel	zinc plated		
stator stack	silicon steel lamination			
front stator insulator	Nylon 6			
rear stator insulator	Nylon 6			
lead wire	tin plated copper	polyelethylene insulation		
magnet wire	copper	polyurethane/polyamide		
solder	pure tin solder, resin core 66 flux			
label	mylar		Flexcon V-23 adhesive	
rust inhibitor	LPS 3 heavy duty rust inhibitor			
grease	Perfluoropolyether grease			
threadlocker	Loctite 272			
adhesive	Loctite 496			
adhesive	Loctite E-214HP			

S. Prat

FNAL 23-26 April 2007


 \rightarrow Tooling cost ~ 7000 \$



Description	Base Material	Coating	Additional Material
front endbell	aluminum	Electrophoresis Coating	
rear endbell	aluminum	Electrophoresis Coating	
ball bearing	52100 chrome steel		Mineral oil lubricant
linear insert	brass		
linear nut	30% glass filled polyester		
magnet	sintered BdFeB	Electrophoresis Coating	
rotor stack	silicon steel lamination		aluminum rivet
spring washer	carbon steel		
spanner nut	aluminum	black anodize	
e-ring	spring steel	black phosphate	
captive sleeve	aluminum	black anodize	
molded sleeve	Glass filled polyester (tooling \$\$)		
end stop	303 stainless steel		
pinion	303 stainless steel		
assembly screw	mild steel	zinc plated	
stator stack	silicon steel lamination		
front stator insulator	Glass filled polyester (tooling \$\$)		
rear stator insulator	Glass filled polyester (tooling \$\$)		
lead wire	tin plated copper	polyimide insulation	
magnet wire	copper	polyimide insulation	
solder	pure tin solder, resin core 66 flux		
label	Remove label: stamp mounting plate		No adhesive
rust inhibitor	LPS 3 heavy duty rust inhibitor		
grease	Apiezon L grease		
threadlocker	Loctite 638		
adhesive	Loctite 638		
adhesive	Loctite E-214HP: this is an epoxy resin		

Joining techniques

Proposal 1

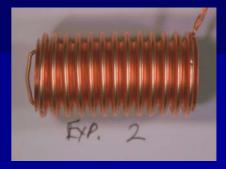
- Joining done as for TTF3 couplers baseline:
 - Stainless steel parts: TIG welds
 - Cu to stainless, Cu to ceramics: vacuum brazing
 - Final joints by EB-weld

Proposal 2

- Final assembly by TIG welding:
 - Stainless steel parts: TIG welds
 - Cu to stainless, Cu to ceramics: vacuum brazing
 - Final joints by TIG weld

Proposal 3

- All metallic joints are brazed under vacuum:
 - > Brazing to bellows \rightarrow problem of annealing bellows
 - > Cu to ceramics: vacuum brazing
 - > Final joints by brazing \rightarrow problem of Ti diffusion into ceramic

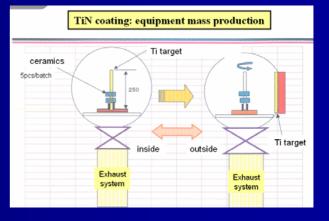

Cu coating

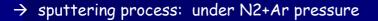

- Different processes are proposed for electroplating:

- DC current
- pulsed current power supply
- Different bath types are investigated:
 - acid bath
 - cyanide bath
 - sulfate bath
 - pyrophosphate bath

- samples received by LAL to measure RRR

Before baking:RRR = 22After baking 2h at 400°C :RRR = 63


TiN coating


 \rightarrow 2 different processes are proposed:

-> vacuum evaporation techniques using equipment of same design as at DESY

- deposit of Ti, then transformation into TiN by introduction of NH3 gas
- or direct deposit of TiN: evaporation of Ti in N2 atmosphere

→ Equipment are being assembled, 1st tests soon

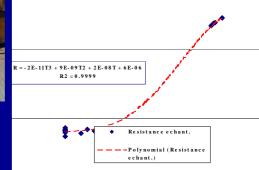
S. Prat

TTC Meeting

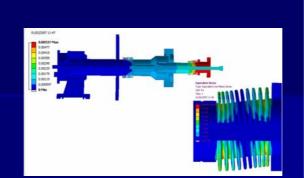
FNAL 23-26 April 2007

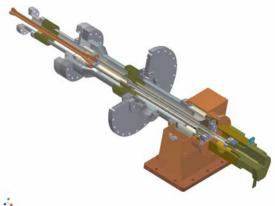
- → Manufacturing techniques:
 - tube pull out for e- pickup and pumping ports
 - · deep drawing for conical part

\rightarrow TIG welding:

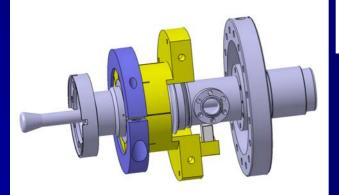

- Validate TIG welds from outside
- \rightarrow Vacuum brazing:
 - He leak test < 10^{-10} Pa m³/s
 - pull tests on window assembly
- \rightarrow Cu coating:
 - adhesion test
 - thickness uniformity measurements on bellows
 - RRR measurements
- \rightarrow TiN coating:
 - layer thickness and stoichiometry
 - + $\epsilon_{\textrm{R}}$ and tand measurements on ceramic

OK if σ_{m} > 100 MPa

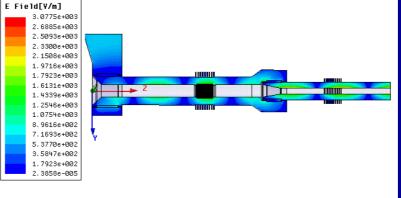


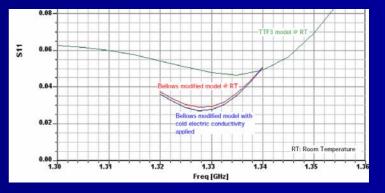


Some work results



Warm window sample




Sliding support

S. Prat

TTC Meeting

23-26 April 2007

FNAL

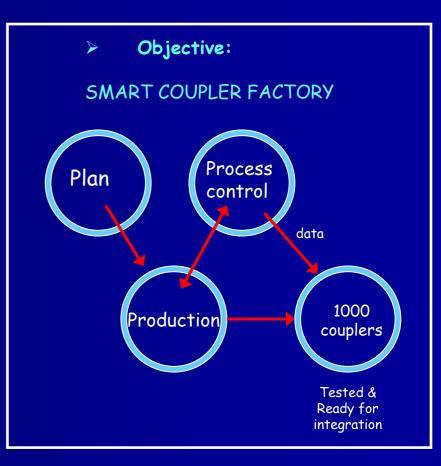
Project Reviews for industrial studies

> 1 - System Design Review

- \rightarrow Make sure that:
 - requirements are well understood
 - efforts are in the right direction
 - the industry puts the right amount of resources
 - the schedule is controlled
- \rightarrow Finalize Technical specifications
- \rightarrow Identify the problems
- \rightarrow Evaluate the feasibility of proposed solutions

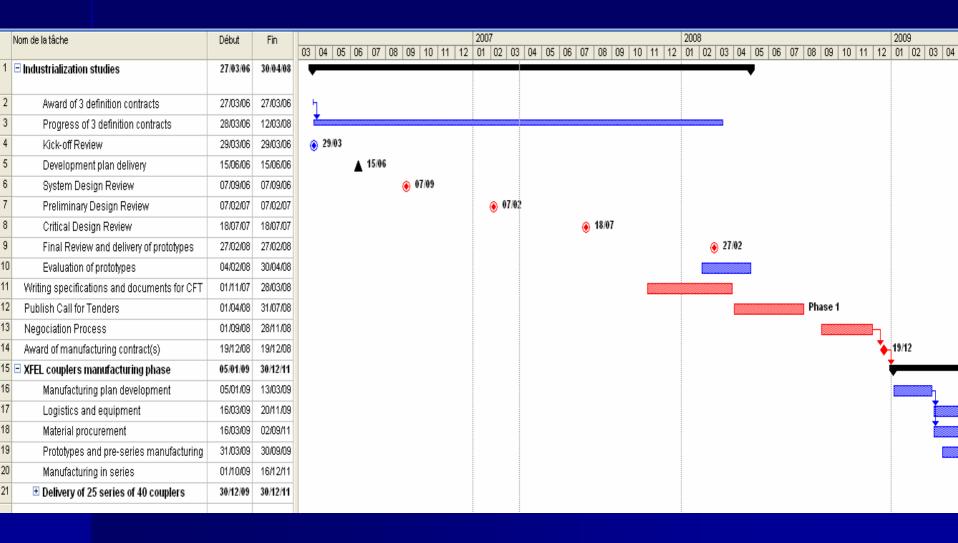
2 - Preliminary Design Review

- Demonstrate the compatibility of the proposed design with the original needs
- Explain how the mass production will be managed, organized, controlled
- Prove the feasibility of manufacturing processes and sequences
- Deliver models and samples for joining, materials, manufacturing techniques, Cu coating



> 3 - Critical Design Review

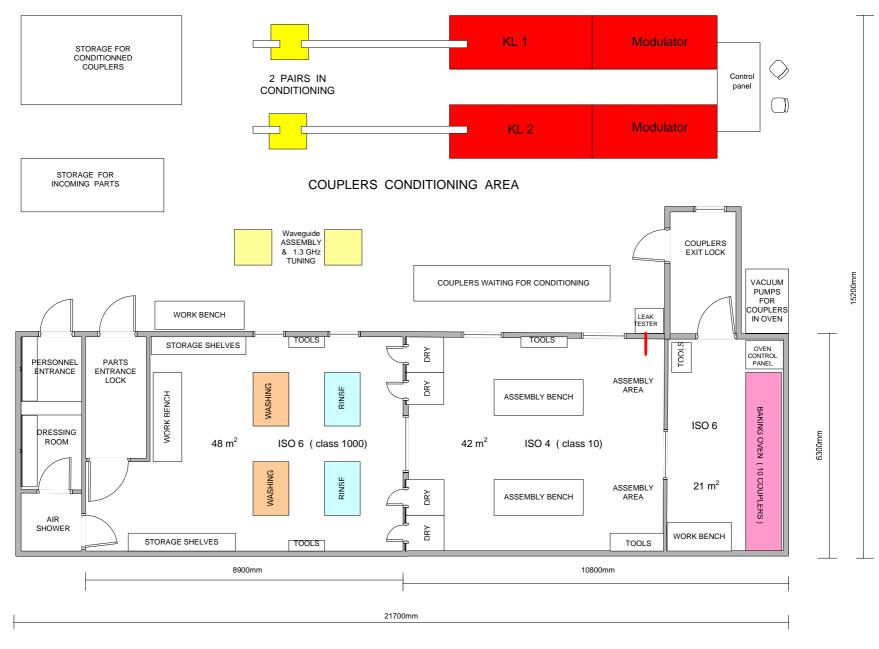
- Provide final Validation samples of Cu plating and TiN coating
- Finalize PBS, WBS and all processes for volume manufacturing
- Establish detailed drawings and bill of materials
- Manufacturing plan for 2 prototypes
- Update the Assembly plan for volume production
- Clean room layout and equipment
- Quality Control Plan for volume manufacturing


4 - Final Review

- Deliver 2 prototypes with control data
- Volume manufacturing plan
- Configuration control plan
- Final risks analysis
- Cost estimate for XFEL couplers
 - fixed costs
 - recurrent costs
 - Iarge equipment costs

Schedule of « Industrialization studies »

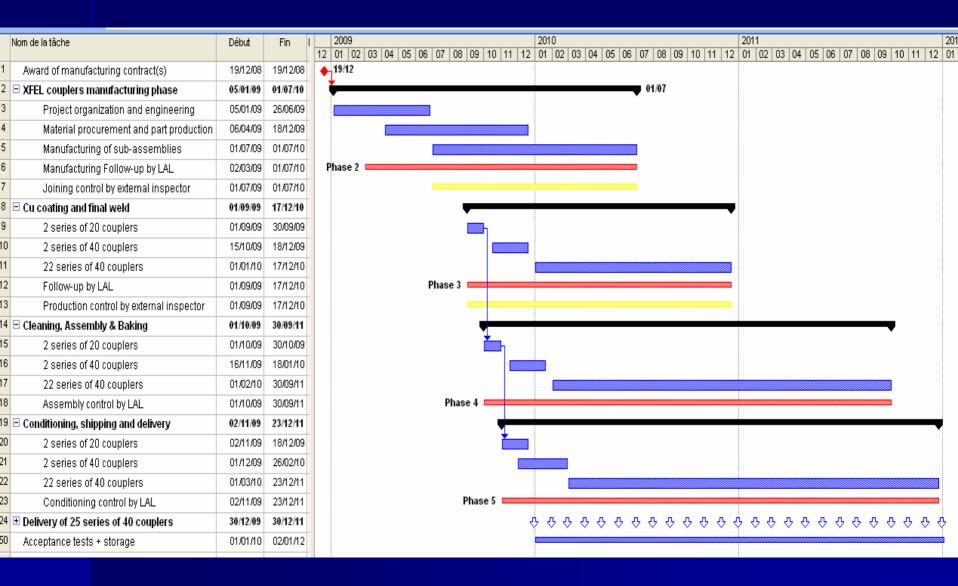
Contract(s) for manufacturing the 1000 power couplers for XFEL will be awarded in 2008


-> Call for tenders for production of XFEL couplers will be initiated mid 2008, based on functional specifications

Negociation procedure: both on technical content and on price

Evaluation of tenders will include:

- Technical content
- Production schedule
- Price
- Technical audit of candidates:
 - Expertise in the domain
 - Previous experience with couplers
 - Manpower and equipment
 - Logistics
 - QA audit wrt ISO 9001:2000
- Risks analysis: technical & financial



CLEAN ROOM FOR XFEL COUPLERS ASSEMBLY (1 PAIR / DAY)

TTC Meeting

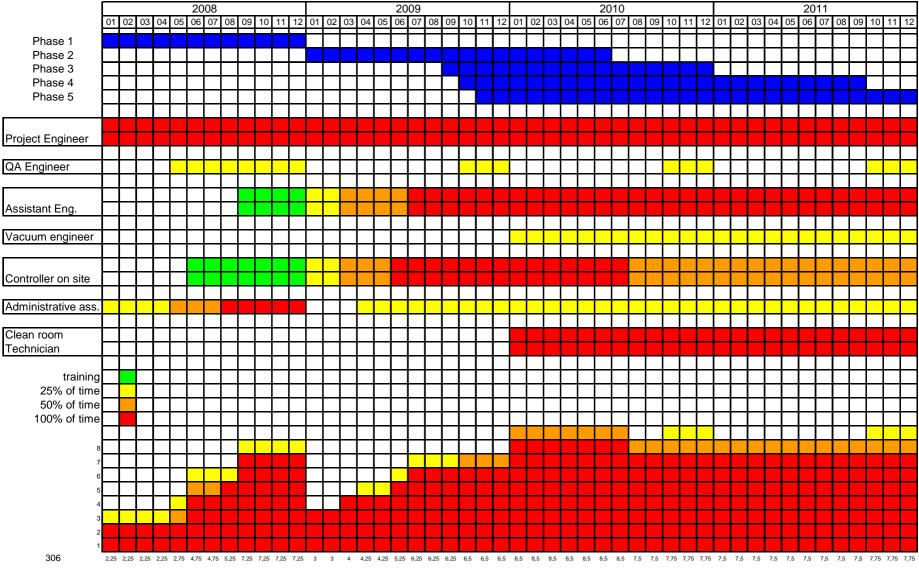
Schedule of « Production of Power couplers for XFEL »

S. Prat

FNAL 23-26 April 2007

Industry follow-up tasks to be done by LAL

Phase a	2: Manufacturing of parts and sub-assemblies	Phase 3: Cu + TiN coating and final joining
At LAL	(Check project organization at industry • verify manufacturing drawings • control procurements: raw material, subcontractors • check manufacturing plan • check joining processes (welding, brazing) (Quality param • schedule cont • documents co • collect data a • invoices contractor	 RRR measurements on samples test final joining on samples
At Industry	 control manufacturing process: Witness points, Hold points collect data Project reviews 	 control Cu coating process parameters control final joining process: H points collect data
LAL	S. Prat TTC Meeting	FNAL 23-26 April 2007


2 options are envisaged for phases 4 & 5 Acceptance tests • Storage • Dismount Ind 1 Ind 1 assemble on modules • Return packing + supports **XFEL** Cleaning, DESY Phase 3 assembly, conditioning Ind 2 Ind 2 Option A Acceptance tests simple shipping Dismount containers • Sub-assemblies storage Storage Ind 1 · Cleaning, assembly, conditioning assemble on modules Phase 3 **XFEL** Single location Ind 2

Option B

S. Prat_____TTC Meeting______FNAL 23-26 April 2007

21

Personnel resources (LAL) for XFEL power couplers project

FTE: 306 / 12 = 25,5 man x year