H and A discrimination with linear photon polarization

<u>A.F.Żarnecki</u>, P.Nieżurawski, M.Krawczyk Warsaw University

<u>Outline</u>

- Introduction
- H/A production at PLC with circular polarization
- Description of linear photon polarization
- Results
- Conclusions

Introduction

Higgs boson production at the Photon Linear Collider

- Previous studies by P.Nieżurawski, A.F.Żarnecki, M.Krawczyk (NŻK):
- $\mathcal{H} \to WW/ZZ$ decay channels
 - Standard Model

"Study of the Higgs-boson decays into W+ W- and Z Z at the photon collider," JHEP **0211** (2002) 034 [arXiv:hep-ph/0207294].

• 2HDM

"Determination of the Higgs-boson couplings and CP properties in the SM-like two Higgs doublet model," JHEP **0502** (2005) 041 [arXiv:hep-ph/0403138].

• Generic model

"Model-independent determination of CP violation from angular distributions in Higgs boson decays to W W and Z Z at the Photon Collider," Acta Phys. Polon. B **36** (2005) 833 [arXiv:hep-ph/0410291].

Introduction

Higgs boson production at the Photon Linear Collider

Previous studies by P.Nieżurawski, A.F.Żarnecki, M.Krawczyk (NŻK):

- $\mathcal{H}
 ightarrow b \overline{b}$ decay channel
 - Standard Model

"The SM Higgs boson production $\gamma \gamma \rightarrow h \rightarrow b\overline{b}$ at the photon collider at TESLA," Acta Phys. Polon. B **34** (2003) 177 [arXiv:hep-ph/0208234].

• MSSM

"Extended analysis of the MSSM Higgs boson production at the photon collider," Proceedings of LCWS 2005 [arXiv:hep-ph/0507006]; "LHC wedge at the PLC: Observability of $\gamma \gamma \rightarrow A, H \rightarrow b\overline{b}$," Acta Phys. Polon. B **37** (2006) 1187.

⇒ see also P. Nieżurawski, "Higgs-boson production at the photon collider at TESLA," arXiv:hep-ph/0503295 (PhD Thesis).

$${\cal H} o b \overline{b}$$

Results based on:

- Realistic $\gamma\gamma$ luminosity spectra V.Telnov simulation results and CompAZ parametrization
- Beams crossing angle, primary vertex distribution taken into account
- NLO calculations of QCD background $\gamma\gamma \rightarrow Q\bar{Q}(g)$ (Q = c, b)
- Other backgrounds: $\gamma\gamma \rightarrow WW$, $\gamma\gamma \rightarrow \tau\tau$, $\gamma\gamma \rightarrow q\bar{q}$ (q = u, d, s) not yet included for preliminary linear polarization results !
- Overlaying events $\gamma \gamma \rightarrow hadrons$: about 1–2 OE per bunch crossing
- Realistic *b*-tagging (*e.g.* for $M_h = 300$ GeV: $\varepsilon_h = 53\%$, $\varepsilon_{bb} = 47\%$, $\varepsilon_{cc} = 2.9\%$, $\varepsilon_{uds} = 0.5\%$)
 - Realistic detector simulation (SIMDET)
 - Full optimization of cuts

SM summary

Results for $M_h = 120 \text{ GeV}$

Corrected invariant mass distributions for signal and background events

Results for $M_h = 120-160 \text{ GeV}$

Cross section measurement precision

MSSM: LHC wedge at PLC

From: CMS NOTE 2003/033

Four MSSM parameter sets considered:

Symbol	μ [GeV]	M_2 [GeV]	$A_{\widetilde{f}}[GeV]$
I	200	200	1500
11	-150	200	1500
- 111	-200	200	1500
IV	300	200	2450

I and III – as in M. Mühlleitner *et al.* with higher $A_{\tilde{f}}$ to have M_h above 114 GeV II – an intermediate scenario

IV - as in CMS NOTE 2003/033

MSSM summary

Results for $M_A = 300 \text{ GeV}$

Corrected invariant mass distributions

Results for $M_A = 200-350 \text{ GeV}$

Cross section measurement precision

MSSM results

Results for $M_A = 300 \text{ GeV}$

We can not distinguish between H and A \Rightarrow measurement of

 $\sigma_{tot} = \sigma_H + \sigma_A$

Corrected invariant mass distributions

MSSM results

Results for $M_A = 300 \text{ GeV}$

Corrected invariant mass distributions

We can not distinguish between H and A \Rightarrow measurement of

 $\sigma_{tot} = \sigma_H + \sigma_A$

 \Rightarrow Need for linear photon polarization

Preliminary results

Only heavy quark background considered!

Luminosity spectra

CompAZ

Parametrization of the spectra simulation results by V.Telnov based on LO Compton cross section formula

Can it be used to describe $\gamma\gamma$ spectra for linear photon polarization ?

Linear polarization

CAIN simulation

 $\gamma\gamma$ luminosity spectra for circular and linear laser beam polarization

Ratio of $\gamma\gamma$ luminosities

CompAZ gives proper description of the spectra modification

Linear polarization

CAIN simulation

Expected photon polarization from LO Compton process

for $E_e = 100, 150, 200$ and 250 GeV

Average $\gamma\gamma$ polarization from CAIN

CompAZ fails to describe polarization !

Linear polarization

Angular correlations

As pointed out by V.Telnov ("Nontrivial effects in linear polarization at photon colliders", ECFA workshop, Montepellier, November 2003) there are large correlations between photon polarization and scattering direction. In collision of two very thin beams:

 $\langle P_{\gamma_1} P_{\gamma_2} \rangle \gg \langle P_{\gamma_1} \rangle \cdot \langle P_{\gamma_2} \rangle$

Average $\gamma\gamma$ polarization from CAIN

$M_A = 300 \text{ GeV}$

Circular laser polarization, $P_C = 100\%$ Linear laser polarization, $P_L = 100\%$ Number of events per 5 GeV bin Number of events per 5 GeV bin $\Delta \sigma / \sigma = 8.3\%$ ∆σ/σ **=18.5%** H+A signal H+A signal M₄=300 GeV M_{A} =300 GeV Parameter set I Parameter set I 150 150 $tg\beta = 7$ $tg\beta = 7$ **Background: Background:** bb(g) bb(g) cc(g) cc(g) 100 100 50 50 Total $L_{\gamma\gamma} = 808 \text{ fb}^{-1}$ Total $L_{yy} = 808 \text{ fb}^{-1}$ 0 375 400 325 200 225 250 275 300 325 350 200 225 250 275 300 350 375 400 W_{corr} [GeV] W_{corr} [GeV]

Lower luminosity at M_A , lower $J_z = 0$ contribution \Rightarrow signal down by factor 2 Higher $J_z = 2$ contribution \Rightarrow no background suppression \Rightarrow background up by 40% Selection cuts differ !!!

$M_A = 300 \text{ GeV}$

Measurements start to be sensitive to the Higgs boson(s) CP properties.

$M_A = 300 \text{ GeV}$

Measurements start to be sensitive to the Higgs boson(s) CP properties.

$M_A = 300 \text{ GeV}$

Results expected after 3×1 years of PLC running

 σ_{\circ} corresponding to MSSM parameter set I

$M_A = 300 \text{ GeV}$

Results expected after 3×1 years of PLC running

 σ_{\circ} corresponding to MSSM parameter set I

Mixed polarization

Dashed line: "reversed" circular laser polarization

 \Rightarrow Best measurement for 100% linear laser polarization, $P_L = 1$

Conclusions

Heavy MSSM Higgs bosons are likely to be almost degenerate in mass.

- Circular polarization \Rightarrow only total H+A production cross section measured.
- \Rightarrow linear polarization required to reconstruct σ_H and σ_A
- CAIN simulation results used to adjust CompAZ parametrization to describe photon beam polarization for linear laser polarization.
- Preliminary results show that H/A contribution to the observed resonance can be estimated with ~ 20% precision.
- *H* and *A* can be distinguished on 4.5σ level.

Assuming total cross section σ_\circ as for MSSM parameter set I