

WBS x.2 - Global Systems

John Carwardine (Argonne) Ray Larsen (SLAC)

Global design effort

Slide 1

Outline

- Scope and themes of WBS x.2
- FY06/07 accomplishments
 - 2.y Design (RDR support)
 - 3.y R&D

- 5.y Facilities
- FY08/09 program
 - Goals, motivation
 - 2.y Design
 - 3.y R&D
 - 5.y Facilities

Scope of WBS x.2

- Six topics with 'global' reach
 - Commissioning/Ops (includes availability simulations, global topics)
 - Controls, Instrumentation, LLRF
 - Installation, Survey & Alignment
- Common themes

- High Availability
- Electronic systems (hardware, firmware, software)
- Installation, manufacturing considerations
- Technical systems for ILC Test Facilities
- In FY08/09, six topics will be managed under single umbrella.
- FY08/09 budget planning has both ILC and SRF budget lines.

ART x.2 WPs in FY06/07

	Α	В	С	D	E	F	G	Н	Ι	
1										
2						FY06		FY	07	
3		FYO6 WP	FY07 WP		Lab FTEs M&S K\$		M&S K\$	FTEs	M&S K\$	
4		2.y Accelerator Design		Design		1.5		3.9	38	
5		2.2.1	2.2.1	Global systems design	SLAC	1.2		0.9		
6		2.2.2	2.2.2	Control System design	SLAC	0.3		0.3		
7			2.2.3	Control System design	ANL			0.9	13	
8			2.2.4	Installation	SLAC			1.9	25	
9										
10	10 3.y R&D		7			1.5	179	3.4	858	
11		3.2.1	3.2.1	High availability power supplies	SLAC	1.2	23	1.5	560	
12		3.2.3	3.2.3	Diagnostic Processor for power supply	SLAC		21	1.4	40	
13			3.2.3.1	Diagnostic Processor for power supply	ANL			0.2	33	
14		3.2.4 3.2.4 High availability control system & st		High availabilty control system & standard instr. Modules	SLAC		118		192	
15			3.2.4.2	High Availability Standard Modules for Instrumentation Systems	ANL			0.4	18	
16		3.10.10	3.10.10	Nanometer resolution BPM system	LLNL	0.3	17	0.1	15	
17										
18		5.y Faci	lities			4.6	390	1.5	78	
19		5.8.4	5.2.1.1	LLRF Controls	FNAL	1.9	135			
20			5.2.1.2	FNAL Test facility Instrumentation and LLRF Controls Collaboration	SLAC			0.2	29	
21		3.9.1 5.8.5 Superconducting RF Cavity HOM BPM Project for the TTF VUV-FEL		SLAC	1.1	124	0.5	15		
22		3.10.2	3.10.2 5.10.4 ATF2 Cavity BPM Electronics		SLAC	1.6	131	0.4	34	
23			5.10.6 ATF2 S-band and IP Cavity BPM		SLAC			0.4		
24										
25							569	8.8	974	

Not all activities are reflected...

- Work supported with Lab core funds is not fully reflected in the WP list. These include:
 - Significant effort on RDR & costing exercises, including Controls, Instrumentation, LLRF.
 - Additional R&D tasks on Instrumentation and LLRF.
 - Scope of work on test facilities (eg ILCTA).

- Major contributions to RDR, eg chapters on:
 - Availability, Commissioning & Operations (SLAC)
 - Controls & Timing (Argonne, FNAL, SLAC)
 - Instrumentation (FNAL, SLAC)
 - Installation (part of CF&S chapter) (SLAC, FNAL)
 - LLRF (FNAL, LBNL)
- International collaborations include DESY, KEK, U. Oxford.

- Reliability studies to assess impact of cost-reduction strategies, including
 - E- and E+ damping rings in a single tunnel.
 - Eliminate hot-spare positron source.
 - Main Linac in a single tunnel (no service tunnel).
- Wrote RDR chapter on Commissioning & Operations.
- Developed budgets for ILC pre-operations and operations phases.
- GDE R&D Board membership, Chair S2 Task Force.

- Strong collaborations continue on Controls, LLRF, and Instrumentation.
- Regular Controls and LLRF inter-regional Webex meetings bring participants from ANL, FNAL, SLAC, SNS, LBNL, DESY, KEK, UIUC, IHEP.
- Completed conceptual designs, costing models and cost estimates, RDR descriptions for
 - Global Control System.
 - Timing & phase reference distribution.
 - LLRF systems.
 - Instrumentation systems.
- Beginning EDR planning process.
- ART Global Systems budget planning for FY08/09

2.2.4 Installation

• Description

- Model tunnel installation for all machine systems except civil infrastructure
- Develop cost models for labor, materials, specialized handlers, workspace
- Contribute to RDR development
- Motivation
 - Installation is a major cost element and conceptual models, cost analysis and industrialization needed for RDR, EDR
- Progress in 06-07
 - Completed conceptual models, cost estimates, RDR descriptions
 - Started developing Work Packages for EDR phase

R&D WPs in FY06/07

Americas

ilr

İİL

	Α	В	С	D	E	F	G	Н	<u> </u>
1									
2						FY	06	FY	07
3		FY06 WP	FY07 WP		Lab	FTEs	M&S K\$	FTEs	M&S K\$
4 2.y Accelerator			elerator l	Design		1.5		3.9	38
5		2.2.1 2.2.1 Global systems design				1.2		0.9	
6		2.2.2	2.2.2	Control System design	SLAC	0.3		0.3	
7			2.2.3	Control System design	ANL			0.9	13
8			2.2.4	Installation	SLAC			1.9	25
9									
10		3.y R&D)			1.5	179	3.4	858
11		3.2.1	3.2.1	High availability power supplies	SLAC	1.2	23	1.5	560
12		3.2.3	3.2.3	Diagnostic Processor for power supply	SLAC		21	1.4	40
13			3.2.3.1	Diagnostic Processor for power supply	ANL			0.2	33
14		3.2.4	3.2.4 High availability control system & standard instr. Modules		SLAC		118		192
15		3.2.4.2 High Availability Standard Modules for Instrumentation Systems		ANL			0.4	18	
16		3.10.10	3.10.10	Nanometer resolution BPM system	LLNL	0.3	17	0.1	15
17									
18		5.y Faci	lities			4.6	390	1.5	78
19		5.8.4 5.2.1.1 LLRF Contro		LLRF Controls	FNAL	1.9	135		
20			5.2.1.2	FNAL Test facility Instrumentation and LLRF Controls Collaboration	SLAC			0.2	29
21		3.9.1	3.9.1 5.8.5 Superconducting RF Cavity HOM BPM Project for the TTF VUV-FEL		SLAC	1.1	124	0.5	15
22		3.10.2	.10.2 5.10.4 ATF2 Cavity BPM Electronics		SLAC	1.6	131	0.4	34
23			5.10.6	ATF2 S-band and IP Cavity BPM	SLAC			0.4	
24									
25				Totals	7.6	569	8.8	974	

- Non-HA Power Supplies a likely chief source of downtime.
- WP goal is to demonstrate the technical and cost viability of an HA design with modular redundancy.
- 3.2.1.1 R&D Program for HA Systems
 - Demonstrate N+1 Prototypes for Uni, Bipolar supplies operating from DC bulk
 - Develop N+1 Redundant Bulks
 - Develop Redundant Controllers
- 3.2.1.2 ATF2 40-unit system
 - Design, build, test 40 Magnet System for ATF2
 - Install at ATF2, document, train KEK personnel.

3.2.1 Progress: HA Dual Control

Americas

REDUNDANT POWER SUPPLY CONTROLLER SWITCHOVER TRANSIENT

Magnet PS Controller Failover Demo

- Master, Slave controllers w/ CANbus link for synchronization
- Digital regulation by PI control
- Either unit can be designated Master
- Master updates slave @ 120 Hz
- Slave tracks Master until master fails (simulated by interlock trip)
- Simulated magnet current dipped <.02% as slave smoothly assumes control, output settles in ~0.75 seconds
- Importance
 - This experiment (along with hotswap of failed controller) demonstrates that normal 1-2 hr MTTR to swap a controller can be eliminated
 - Overall PS system goal is A>99%
 - Availability limited to <90% without redundant bulks and controllers

2007 DOE/NSF review

- Develop embeddable diagnostics circuits for power systems to help minimize fault response time (MTTR) and predict impending faults.
- Module-level diagnostics in M+N systems also offer failure avoidance.
- Pohang Collaboration*
 - Full prototype designed, built to joint specifications
 - Delivered two tested units to SLAC late 2006
 - Evaluation program in large DC power supply underway at SLAC
- SLAC refocused on Diagnostic Controller for Marx modulator
 - Units installed and timing controls used for first test to 120 kV
 - Currently improving protection and shielding to mitigate noise trips.
- Diagnostics for HA Modular N+1 PS
 - Conceptual designs starting in conjunction with HA Controller design (3.2.1)
 - Small modules require custom hybrid circuit or IC implementation.

3.2.3 Diagnostic Processors

Americas

2007 DOE/NSF review

- Description
 - Develop HA standard architectures for hardware and software, controls and front end instrumentation
 - Test critical features of hardware, applications software
 - Evaluate key applications, e.g. LLRF, BPMs, against candidate standard platforms
 - Candidate Platform: Advanced Telecom Computing Architecture (ATCA), A=0.99999 at crate level.
- Motivation
 - HA required to meet up-time goals
 - Instrument standards essential for engineering, maintenance efficiency, low cost
 - New gigabit serial technologies provide opportunities to move designs to next generation technologies embraced by industry

3.2.4 + 3.2.4.2 Progress

- Progress on ATCA (3.2.4)
 - Major labs have purchased starter kits (SLAC, Argonne, Fermilab)
 - FNAL, DESY started new instrumentation & controls designs for both ATCA and µTCA. (DESY evaluating ATCA for XFEL Controls)
 - UIUC developing spec. for ATCA carrier card to host VME cards.
 - Highly successful ATCA ATCA workshop and papers at RT-2007.
- Progress on HA software (3.2.4.2)
 - Exploring high availability solutions for control system software.
 - Identified several candidate frameworks, including *OpenClovis*.
 - Exploring ATCA from a control system software perspective.
 - EPICS ported to ATCA CPU blades running Linux.
 - Demonstrated basic redundancy and failover with EPICS using clustering software and a virtual machine.

ATCA Starter Kits

2007 DOE/NSF review

University Programs

- U.Penn: Real Time Simulator for ILC RF & cryomodules
 - Penn Virtual Cavity (PVC), Real Time Simulator
 - Cavity Tuners
- UC. Davis
 - Radiation Damage Studies of Materials and Electronic Devices Using Hadrons
- UIUC (via MOU from SLAC)
 - ATCA evaluation for front-end electronics applications.
 - Developing spec for VME interface to ATCA.

Facilities WPs in FY06/07

Americas

	А	В	С	D	E	F	G	Н	1
1									
2						FY	06	FY	07
3		FY06 WP	FY07 WP		Lab	FTEs	M&S K\$	FTEs	M&S K\$
4	4 2.y Accelerator		elerator l	Design		1.5		3.9	38
5		2.2.1	2.2.1	Global systems design	SLAC	1.2		0.9	
6		2.2.2	2.2.2	Control System design	SLAC	0.3		0.3	
7			2.2.3	Control System design	ANL			0.9	13
8			2.2.4	Installation	SLAC			1.9	25
9									
10		3.y R&L	2			1.5	179	3.4	858
11		3.2.1	3.2.1	High availability power supplies	SLAC	1.2	23	1.5	560
12		3.2.3	3.2.3	Diagnostic Processor for power supply	SLAC		21	1.4	40
13			3.2.3.1	Diagnostic Processor for power supply	ANL			0.2	33
14		3.2.4	3.2.4	High availabilty control system & standard instr. Modules	SLAC		118		192
15			3.2.4.2	High Availability Standard Modules for Instrumentation Systems	ANL			0.4	18
16		3.10.10	3.10.10	Nanometer resolution BPM system	LLNL	0.3	17	0.1	15
17									
18		5.y Faci	ilities			4.6	390	1.5	78
19		5.8.4	5.2.1.1	LLRF Controls	FNAL	1.9	135		
20			5.2.1.2	FNAL Test facility Instrumentation and LLRF Controls Collaboration	SLAC			0.2	29
21		3.9.1	5.8.5	Superconducting RF Cavity HOM BPM Project for the TTF VUV-FEL	SLAC	1.1	124	0.5	15
22		3.10.2	5.10.4	ATF2 Cavity BPM Electronics	SLAC	1.6	131	0.4	34
23			5.10.6	ATF2 S-band and IP Cavity BPM				0.4	
24									
25					Totals	7.6	569	8.8	974

5.8.4 - LLRF Controls

- LLRF is an R&D focus of the beam test facilities.
- LLRF phase/amplitude control
 - Develop very good feedback/control algorithms for single cavity and subsequently for multiple cavities.
 - Address LLRF goals of RDB S2.
 - Study the SCRF cavities from an LLRF perspective.
- Precision timing / RF phase reference distribution

- Testing prototype 10-channel and 33-channel LLRF controllers with lower noise and higher capacity to host DSP & control algorithms.
- A 3.9 GHz LLRF system has been developed for use at A0 with a copper cavity.
- Migration from a 250 kHz Intermediate Frequency (IF) to a 13MHz IF for the cavity RF signal down conversion
- Constructed and in process of testing of piezo-electric fast tuner hardware and software for Capture Cavity II.
- Continuing single + multi-cavity simulations, beginning development of a real time simulator (U.Penn)

- Gained 20x improvement in noise levels vs 250KHz IF.
- Encouraging results that opens up new studies
 - Study undesired cavity modes (such as 8/9 π) which are now in the pass band and will cause instabilities.
 - Filter optimization, new control strategies.

U.Penn Virtual Cavity (PVC)

Americas

http://einstein.hep.upenn.edu/~keungj/simulation.html

Justin Keung

2007 DOE/NSF review

3.10.2+5.10.4 - ATF2 Cavity BPM R&D

Americas

Move BPM in 1 μm steps

•	10 minute run
•	800 samples
•	σ ≈ 24 nm

- Testing of various
 C-Band cavity BPM shapes
- Spaceframe with 3 BPM's, mounted on hexapots for alignm.
- Analog dual downconverter
- Reference cavity for amplitude and phase normalization
- 14-bit digitizer
- Demonstrated with beam:

24 nm resolution!

2007 DOE/NSF review

3.9.1+5.8.5 - HOM BPM Studies (FLASH)

2007 DOE/NSF review

x.2 Budget Planning for FY08/09

x.2 Scope and budget

• Scope

- Support EDR activities in the six x.2 topic areas
- Support targeted R&D programs
- Facilities programs
- Budget targets
 - FY08: \$5.6M (ILC) + \$4M (SRF)
 - FY09: \$7.0 (ILC) + \$4.7M (SRF)

x.2 Priorities for FY08/09

- 2.y Support EDR activities in the six x.2 topic areas
 - Develop/foster inter-regional WP-based R&D program.
 - Foster collaborations, grow the participation in all three regions.
 - Refine engineering and costing models.
 - Continue availability studies (system-level, subsystem-level).
 - "Level-3 Topic Leadership"
- 3.y Support targeted R&D programs, demonstrate performance
 - RF phase/amplitude control of beam-loaded cavities.
 - Develop reliable precision beam instrumentation.
 - R&D on high availability for electronic and software systems.
- 5.y Facilities
 - Technical Systems support for Test Facilities (ILCTA)
 - Evaluate + gain field experience with prototypes from R&D program.

x.2 Budget allocations by topic

			FTF	Direct	Total	FTF	Direct	Total	
WBS	Description			M&S	Total		M&S	Total	
VVD3	Description			K\$	k\$		K\$	k\$	
1.v	Management	ILC	0.5	30	151	0.5	40	163	
2.y	Accelerator Design	ILC	6.3	275	1554	7.5	440	1975	
	Commissioning / Operations		1.0			1.0			
	Global Controls		1.0			1.3			
	Installation		2.0			2.0			
	Instrumentation and Feedback		1.0			1.3			
	Survey & Alignment		0.3			0.5			
	LLRF		1.0			1.5			
3.y	R&D	ILC	12.2	1210	3890	13.3	1225	4487	
		SRF	1.0	45	233	1.5	45	323	
	Commissioning / Operations		2.2	160		1.0	35		
	Global Controls		3.0	430		3.8	465		
	Installation								
	Instrumentation and Feedback		3.5	335		4.0	415	415	
	Alignment								
	LLRF		4.5	330		6.0	355		
5.y	Facilities	ILC	0.8	100	302	2.0	180	636	
		SRF	15.3	1009	<i>3927</i>	19.8	823	4534	
	Global Controls		7.5	350		10.0	262		
	Instrumentation and Feedback		3.5	355		4.3	330		
	LLRF		5.0	404		7.5	411		
			10 7	161F	5007	22.2	100F	7761	
			17./	1015	5897	23.3	1885	1201	
1	IOta	ai SKF	16.3	1054	416U	21.3	868	485/	

Does not fully reflect Facilities activities under SRF line

2007 DOE/NSF review

ilr

Planning considerations

- A broad scope of activities must be supported. Difficult to consolidate to a small number of adequately-funded programs.
- Plan does not reflect the full scope of effort
 - WPs funded or supplemented by Lab core funds outside ART/SRF funding guidelines.
 - Full scope of work planned for the test facilities.
- Most of the R&D and design activities are manpower intensive.
- In progress: integration of ART R&D priorities with test facility programs.

LLRF in FY08/09

- LLRF analysis and Algorithm development
 - Develop and implement feedback and LLRF control algorithms
 - Cavity modeling, running measurements and testing new algorithms.
- Cavity Resonance Control
 - Study the performance of piezo and magnetostrictive tuner in controlling and sensing mechanical oscillations in cavities.
- Precision RF Reference generation and distribution
 - Develop long-haul (km) and 'short-haul distribution (100m).
 - Test redundancy and transparent fail-over.
- LLRF for NML
 - LLRF for 3-cryomodule control
 - LLRF analog components

LLRF control algorithms

- Control Algorithms(Fdbck/ Feedforward)
- Meas. QL and detuning
- Cavity Frequency Control(Fast and Slow)
- Amplitude/Phase Calibration
- Vector-Sum Calibration
- Loop phase and loop gain
- Adaptive Feedforward
- Exception Handling
- Klystron Linearization
- Lorentz Force Compensation

Long-haul RF phase distribution

Instrumentation in FY08/09

- Cold L-Band cavity BPM development [FNAL]
- ATCA digitizer (eg cavity BPMs) [FNAL]
- Advanced beam monitors
 - Bunch length, bunch arrival time (EOS, diode-detect.)
 - Beam phase (EOM), beam profile (Laser-wire), etc.
- Collaborations
 - HOM studies [SLAC, FNAL]
 - ATF2 cavity BPM's [SLAC]
- NML infrastructure instrumentation [FNAL, SLAC]
 - Cryomodule instrumentation
 - Beam instrumentation.

Cold L-Band Cavity BPM R&D

Americas

:lr

<u>Goal:</u> Development of a **cold CM-free L-Band cavity BPM**

with 1 μ m single bunch resolution

EOS Bunch Length Measurement

Americas

EOS Studies Collaboration

at the ANL Advanced Wakefield Accelerator (AWA) <u>Goal:</u> Bunch length measurement R&D

Electro-optical sampling (EOS) by temporal decoding

2007 DOE/NSF review

- The ILC accelerator complex must deliver high up-time from the onset of the ILC operations phase
 - Availability depends on both fault rate and recovery time.
 - Crate-level availability: "Five Nines" (A=0.99999).
 - Cannot rely on the standard approach of 'best effort' plus incremental improvements based on operational experience ("fix as we go").
 - M+N redundant systems offer tolerance to failures ...but it's much more than just adding redundancy

Accelerator systems must be *designed* for high availability.

HA Integration

ilr

Slide 39

R&D program for HA

- Configuration management, QA, etc will be essential for success once the ILC reaches the project phase.
- In the mean time, we need to become better equipped to make sound technical and cost-conscious design decisions
 - Learn what it takes to implement HA technical solutions.
 - Evaluate payback and cost / penalty.
 - Evaluate graded (measured) implementation and applicability.
- HA R&D targets electronic systems (hardware, firmware, software)
 - HA PS (and kicker) N+M redundancy schemes.
 - Controls architecture, software 'ecosystem', availability management.
 - Evaluation of ATCA electronics platform (more than just HA).

R&D field evaluations

- Deploy R&D prototypes at operating facilities
 - Gain implementation and field experience
 - Focus on NML.
 - Will be specific expectations of relevant R&D WPs.
- Examples...
 - Evaluate ATCA & uTCA as electronics platform
 - High Availability Control System evaluation system
 - Precision RF phase reference distribution
 - Inherent in instrumentation and LLRF programs.
- Detailed planning is continuing...

Americas

FY08/09 Summary

- Plan for FY08/09 is budget-limited, but supports most of the important programs
- Still some unknowns, eg scope of EDR
- Focus on putting R&D HA results into action in TF.
- Work in progress: resolving the details...
 - Tune new Americas WP's, management structure
 - Transition WP's toward inter-regional integrated R&D program to meet EDR goals.

Backup & extra slides

ilc 2.2.4 Installation (FY08/09)

Americas

Scope of work and budget plan for FY08 & FY09 (Requested)

				FY 08			FY 09				
Tasks	Scope of work	e of work (09, 00) Tools and software	M&S	3		M&					
	(1100-03)		Software (licenses)	Technical support	FTE	Software (licenses)	Technical support	FTE			
4D model	3D modeling	CATIA	\$30K	\$35K							
		AutoCAD	SALC license	\$5K							
	Scheduling	Primavera	\$10K	\$25K							
	4D modeling of installation plan	NavisWorks	\$5K	\$10K 2							
Operation optimization	4D-based time-space conflict simulation and analysis	NavisWorks	Included above	Included above							
	Interface and interference checking	CATIA				\$30K	\$35K				
	Optimization of equipment installation plan	Graphisoft Control			\$10K	\$10K	2				
4D database	Development of 4D	SQL or MS Access				\$25K	\$25K				
	database system (described in detail below)	NavisWorks				\$5K	\$10K				
		<u>Total</u> ~\$45K		~\$75K	2	~\$70K	~\$80K	2			

2007 DOE/NSF review

ATF Damping Ring BPM Upgrade

ATF DR BPM Upgrade Collaboration with help of the force of "Joda" <u>Goal:</u> 0.1 μm resolution to achieve < 2 pm vertical emittance in the ATF damping ring <u>Achieved in March 07:</u> 0.6 μm

ilc

Instrumentation R&D at ESA

ILC Beam Instrumentation R&D at the SLAC Endstation A (ESA)

- BPM energy spectrometer (T-474)
- Synch Stripe energy spectrometer (T-475)
- Bunch length diagnostics (LOLA, 90GHz diode, T-487)
- IP BPMs/kickers—background studies (T-488)
- LCLS beam to ESA (T490)
- Linac BPM prototypes
- EMI (electro-magnetic interference)

RDR view of linac RF station

2007 DOE/NSF review

Not just redundancy...

...but also sound design principles, methodology, QA

2007 DOE/NSF review

Americas

Prototype HA Controls Core Test

2007 DOE/NSF review