

<u>Why ?</u>

Calorimeter assisted track finder package has been developed primarily for SiD concept studies \rightarrow based on org.lcsim framework

org.lcsim event data model is LCIO-compatible (not identical)

Once complexity of detector options and realism of studies had increased, tracking infrastructure became a bottleneck

TrackerHit - measurement, input to pattern recognition

- no way to represent non-point-like object like silicon strip
- no access to geometry
- no well defined way to access MC truth
- global coordinates only
- no convenient way to introduce corrections once the hit is assigned to track

Track, RawTrackerHit, others have their own problems...

Multiple custom extensions have been introduced by algorithm developers, resulting in lots of incompatible packages.

Lightweight interface to geometry

Designed to support virtual segmentation at run time.

Each readout channel is identified by a reference to Sensor and a channel ID.

Dmitry Onoprienko, Kansas State University

org.lcsim.contrib.onoprien.tracking.hit Interface DigiTrackerHit

<u>DigiTrackerHit</u>

All Superinterfaces:

java.lang.Comparable<DigiTrackerHit>

All Known Implementing Classes:

DigiTrackerHitAdapter, DigiTrackerHitComposite, DigiTrackerHitElemental

Representation of signal from a single tracker channel (pixel or strip).

Method Summary		
int	getChannel()	
	Returns channel ID on the sensor.	
java.util.List< <u>DigiTrackerHit</u> >	getElementalHits()	
	Returns a list of underlying elemental hits.	
MCParticle	getMCParticle()	
	Returns MCParticle that produced the hit.	
Sensor	getSensor()	
	Returns <u>Sensor</u> object this hit belongs to.	
double	<pre>getSignal()</pre>	
	Returns signal in the channel.	
double	getTime()	
	Returns time associated with the hit.	
boolean	<pre>isComposite()</pre>	
	Returns true if the hit is a superposition of more than one elemental hit.	
Methods inherited from interface java.lang.Comparable		

compareTo

Dmitry Onoprienko, Kansas State University

TrackerClusterData

org.lcsim.contrib.onoprien.tracking.hit Interface TrackerClusterData

All Known Subinterfaces:

TrackerCluster

All Known Implementing Classes:

TrackerClusterBasic, TrackerClusterDataBasic

public interface TrackerClusterData

Collection of DigiTrackerHits that cannot be unambigously separated. Clusters are independent in a sense that a track crossing the sensor only contributes to one cluster. But it is possible for several tracks to contribute to one cluster.

Method Summary	
java.util.List< <u>DigiTrackerHit</u> >	getDigiHits () Get list of DigiTrackerHits that compose the cluster, sorted by channel ID.
Sensor	getSensor() Returns the Sensor object associated with this cluster.
double	getSignal() Returns combined signal of all DigiTrackerHits in the cluster.
double	getTime() Returns signal-weighted average time for all DigiTrackerHits in the cluster.

6

org.lcsim.contrib.onoprien.tracking.hit Interface TrackerCluster

All Superinterfaces:

TrackerClusterData

All Known Implementing Classes: TrackerClusterBasic **TrackerCluster**

Adds behavior to TrackerClusterData

public interface TrackerCluster extends TrackerClusterData

Method Summary		
java.util.List< <u>TrackerHit</u> >	getTrackerHits()	
	Returns a list of TrackerHits produced from this cluster.	
TrackerHit	<pre>makeTrackerHit()</pre>	
	Creates TrackerHit from this cluster without using any trajectory information.	
TrackerHit	makeTrackerHit (TrackerHit hit)	
	Updates an existing TrackerHit without using any trajectory information.	
TrackerHit	<pre>makeTrackerHit(TrackPoint trackPoint)</pre>	
	Creates TrackerHit from this cluster.	
TrackerHit	<pre>makeTrackerHit(TrackPoint trackPoint, TrackerHit hit)</pre>	
	Updates an existing TrackerHit.	

Methods inherited from interface org.lcsim.contrib.onoprien.tracking.hit.TrackerClusterData

getDigiHits, getSensor, getSignal, getTime

org.lcsim.contrib.onoprien.tracking.hit Interface TrackerHit

All Known Implementing Classes:

TrackerHitAdapter, TrackerHitBasic, TrackerHitPoint

public interface TrackerHit

Tracker hit object to be used by a fitter. TrackerHit can represent either a point-like (pixel) or a segment-like (strip) object. Each hit has a local reference frame (u,v,w) associated with it. U is the measurement direction, V is along the length of the strip, $W = U \times V$.

Method Summary		
<u>TrackerCluster</u>	getCluster() Points back to TrackerCluster that produced this hit.	
hep.physics.matrix.SymmetricMatrix	getCovMatrix() Returns covariance matrix of the hit in global reference frame.	
double	getLength() Returns length of the segment defining the hit.	
hep.physics.matrix.SymmetricMatrix	getLocalCovMatrix() Returns covariance matrix in local frame of the <u>Sensor</u> .	
hep.physics.vec.Hep3Vector	getLocalPosition() Returns position of the hit in local reference frame of the <u>Sensor</u> .	
SpacePointVector	getLocalSegment() Returns SpacePointVector pointing from start to end of the segment defining the hit in the local reference frame.	
hep.physics.vec.Hep3Vector	getPosition() Returns position of the hit in global reference frame.	
SpacePointVector	getSegment() Returns SpacePointVector pointing from start to end of the segment defining the hit in the global reference frame.	
<u>Sensor</u>	getSensor() Returns <u>Sensor</u> object for this hit.	

The Rest

Many classes are tailored specifically to calorimeter assisted tracking algorithm.

Track - list of TrackNodes, each consisting of TrackPoint (local trajectory parameterization) and TrackAnchor (knows how to calculate residuals with respect to TrackPoint, used in fitting).

Both TrackerHit and MipStub implementing classes also implement TrackAnchor.

Given TrackNode, propagator can get a list if TrackAnchor candidates for attachment to the Track (currently based on layer numbers, the infrastructure allows more flexible grouping).

Package status - available functionality

In the contributed area of org.lcsim CVS repository:

org.lcsim.contrib.onoprien.tracking

Basic implementations available for all discussed elements. Some are untested. Segmentation:

Segmenters based on DetectorElement

SensorType: Cylinder, Rectangle, Ring, Wedge, Hexagon.

Digitization:

SimTrackerHit smearing

Interface to Nick Sinev's pixel digitization package

Interface to Tim Nelson's strip digitization package

Clustering:

Nearest Neighbor

TrackerHitMaker:

SimpleCentroid

Track Finder - work in progress