Thoughts of Cavity Peripherals R&D in EDR phase

H. Hayano (KEK)

Cavity peripherals to be considered :

- Tuner (mechanical, piezo) <- Lorentz detuning compensation
- Magnetic shield <- acc. Gradient, easy handling
- He jacket with sliding support mechanism <- keep alignment
- Alignment method <- external alignment reference
- Input coupler <- heat load, tuning capability
- Beam pipe flange & vacuum seal <- vacuum-tight
- Feed-through connector <- RF heating, vacuum-tight
- Monitor cables <- heat load
- Thermal anchors <- heat load
- Bolts & nuts <- easy handling, contamination by lubrication

R&D goals in EDR phase

- Establishment of ILC design unified design? -> yes merit of unified design: exchangeability world-wide demerit of unified design: no flexibility
- Cost reduction R&D keep ILC performance. keep maintenability.
- Industrialization

cavity peripherals is easy to industrialize.

How to achieve the goals

How to achieve these goals in 3 years (2007,8,9) 1st year: nomination of task team, start discussion 2nd year: discuss & collect required data to compare 3rd year: technology selection, then make unified design, drawings, fabrication

Who will make selection of each technology Task force by technical expert + PM Chair person?

When will it be made?

After one cryomodule test experience in each region. (DESY:done, FNAL:2007,2008, KEK:spring 2008)

New idea or new technology after selection?

->Same task force.

Status of cavity peripherals technologies

Tuners & He jacket (no BCD),

existing or planning:

TTF: Saclay 1 tuner, Saclay 2 tuner, Blade tuner (Ti jacket)

FNAL : Saclay 1 tuner, Blade tuner for 3.9GHz (Ti jacket)

STF: Slide jack tuner(Ti jacket), Ball screw tuner(SUS jacket)

Couplers (BCD : TTF III),

existing or planning:

TTF: TTF III, (TTF V, TW60)

FNAL : TTF III

STF: two disk windows coupler, capacitive coupling coupler

Others (no BCD),

Magnetic shields: shield outside, shield inside of He jacket Alignment method: reference at beam pipe flange, at jacket end plate Etc.

Engineering Points for Tuner & Jacket

The followings need to be compared :

- Margin of detuning compensation.
- Small stroke of piezo actuator.
- Piezo exchangeablity (fatigue of piezo actuator).
- Motor exchangeability (in case of accident).
- Easy installation of tuner.
- Easy access to alignment reference.
- Easy coverage of magnetic shield.

Saclay-1 Tuner (TTF)

Saclay-2 Tuner

Blade Tuner

Slide Jack Tuner (STF-BL)

Ball screw tuner (STF-LL)

Dynamic Lorentz Detuning

Fig. 3: Lorentz force excitation of mechanical modes during pulsed operation of a TTF 9-cell cavity, measured with the piezo-element (30 MV/m flat-top gradient 10 Hz repetition rate).

 $\Delta Pkly < 10 \% \rightarrow Detuning angle < 12 deg., (<math>\Delta f < 53Hz$)

Two Dominant Mechanical Modes Single –Cell

Mechanical Oscillation

Good Approximation

 $x(s,t) \cong x_{\text{Fundamental modes}} + x_{\text{Second - order modes.o}\pi}$ $\delta f(t) \cong \frac{df}{dx} x_{\text{Second-order modes},0\pi}$; $t \leq \text{Filling Time}$ $\delta f(t) \cong \delta f_{\text{Second-order modes}} + \frac{d f}{d x} x_{\text{Fundamental modes}}; \quad t \ge \text{Filling Time}$ $\cong \delta f_{\text{Second-order modes}} + \frac{df}{dl} \delta l$ $\cong A E_{acc}^{2} + \frac{df}{dl} \frac{dl}{dF} \left(B E_{acc}^{2} \right)$ $\cong A E_{acc}^{2} + \frac{df}{dl} \frac{B}{K_{c}} E_{acc}^{2}; \quad K_{S} : \text{Tuning System Stiffness}$

		TTF Saclay-I	STF Slide Jack	STF Ball Screw
Α	Hz / (MeV/m) ²	0.37(TESLA)	0.37(TESLA)	1.2(LL)
В	N / (MeV/m) ²	0.034	0.034	0.05
df / dl	Hz /µm	320	320	370
K _S	N /µm	22	72	55
K _{jacket}	N /µm	50	95	61
K _{tuner}	N /µm	40	290	500
Stationary Δf (31.5 MV/m)	Hz	870	520	1540
∆f (Compensation)	Hz	500	150	1000
Fine Tuning Stroke	μm	1.5	0.5	2.7

Module 6 Cavity 3

Gradient

Detuning

Residual detuning: ~50Hz with piezo on

L. Lilje

Maximum Compensation & Residual Error

Maximum Lorentz Force detuning compensation results

Operating Gradient Error Source

Error Source	Error	Effect on Energy Gain	
Input Coupling Geometric + Field Flatness	10%	+1.1, -1.4%	Fixed
Input Power	2%	+1.5, -1.6%	Fixed
Input Power Phase	3 deg.	-0.25%	Fixed
Lorentz Detuning Compensation Error	11 deg.	-2.1%	Need Precise Tuning

Gradient Error in flat-top

Cavity Voltage Error & Gain Reduction

S. Noguchi

Engineering Points for coupler

The followings need to be compared :

- rf power capability
- low heat load
- easy installation
- tuning capability (fixed coupling, adjustable coupling)
- conditioning time
- window multipacting/breakdown
- leak tight vacuum seal
- no contamination during cold part assembly

TTF-III Coupler

Input Coupler for STF Baseline Cavities

Improved design for simplicity with no tuning mechanism. TRISTAN Type Coaxial Disk Ceramic ;

(KEKB 1 MW/cw, JPARC-ADS 2.2 MW/pulse)

Power test of Two disk couplers

Four input couplers have been successfully processed up to 1.0 MW in a pulsed operation of 1.5 msec and 5 Hz, without any troubles. Total processing time is ~ 50 hours, (very careful).

Heat load estimation of Two disk coupler

Total heat loss(static) of Two disk coupler

35 MV								
	Type of wire	Q 300K~80K	Q 80K~5K	Q 5K~2K	\mathbf{H}	Q at 80K (W)	Q at 5K (W)	Q at 2K (W)
	C.C	0.20631672	0.068002944	0.000387168		6.294787142	2.679214463	0.99659426
Sensor wire	Cernox	0.4616128	0.6915028	0.0479688				
	PtCo	0.577016	0.883536	0.0007584				
	Area of thermal anchor	Q 300K~80K	Q 80K~5K	Q 5K~2K				
Coupler Body	1X	2.778976164	1.036172719	0.054801882				
	1/2X	2.759197429	1.285294939	0.105984042				
		Q 300K~80K	Q 80K~2K					
RF Cable	Х7	2.270865458	0.75363881					
		Q 300K~2K (W)						
Piezo	RF cable	0.1373436						
	wire	0.0016956						

Tsai MingHsun

Capacitive coupling couplers

By H.Matsumoto and S.Kazakov

TITLE: INPUT COUPLER FOR ILC-45WK/W DATE: AUG. 18, 265 H. WATSUNOTO, S. RAZAKOV

			E high power rest
Tek Run		Trig'd	
3	Δ:	1.50ms ∆: 228mV	Other tested power:
	@:	1.45ms @: -229mV	500-kW and 1-MW with
			1.5-msec, 5-pps for
	2 ANA 1 5		each 20 hours.
2	2-MW, 1 9-1	isec, 3-pps 🔤	Summary of high power
4	processing time took wit	hin 18 hours to reach	tests:
	processing mile room with	init ito hours to reach,	1) a prototype input couple
	Trademission barrier		reached a first goal fo
****	- I ransmission power		power capability for ILC 4:
	And the second design of the s		2) modular structure provide
			good maintainability, if even
			repair the broken parts
	Input power		such as warm side r
	Manager and a second se		#1 coupler.
Ch1 50.0m	V Ch2 100mV + M 2	00µs A Ch1 ∿ 14.0mV	3) MO type rf flange provided
SU. UM	V CHA SULUMV + : : : : : : : : : : : : : : : : : : :	0.60 %	the good performance.
and the second		المستعدية ومستعد والمستعد المستعد المستعد المستعد المستعد المستعد المستعد المستعد المستعد المستعد الم	

Successfully demonstrated the high power performance up to 2MW!

The specification: 500kW, 1.5msec, 5Hz @ 45MV/m operation

Heat load estimation of Capacitive coupling coupler

Total heat loss (static) of Capacitive coupling coupler

45 MV								
	Type of wire	Q 300K~80K	Q 80K~5K	Q 5K~2K		Q at 80K (W)	Q at 5K (W)	Q at 2K (W)
	C.C	0.18339264	0.068002944	0.000387168		4.094725443	5.216124571	0.381396827
Sensor wire	Cernox	0.4616128	0.7068288	0.0040448				
	PtCo	0.577016	0.883536	0.0007584	- 2			
	Area of thermal ancho	Q 300K~80K	Q 80K~5K	Q 5K~2K				
Coupler Body	1X	1.174459296	1.49694252	0.172072772				
	2X	1.168704707	1.654814307	0.104810419				
		Q 300K~80K	Q 80K~5K	Q 5K~2K	-			
	RF Cable	0.52954	0.406	0.0069237				
			Q 300K~2K (W)					
	Thermal coupler		0.092399568					

Tsai MingHsun

Coupler Installation to Cavity

Installation from side with sliding stage

No fixing support

Installation from downside

with fixing support Because of coupler bellows

Others

magnetic shield, cavity alignment, vacuum seals, feedthrough, ...

Three cavities (#1, #2, #4 Cavity) covered with He Jacket

Magnetic Shield Inside

March, 2007'

Alignment reference of STF TESLA Cavity

vacuum seals

hexagonal cross-section Al gasket. In-coated helico-flex. Special helico-flex (Saclay) Indium wire seal, ...

feedthrough

Ceramic insulator. Sapphire insulator. Thermal anchor on it, ...

summary

Cavity peripherals:

- Tuner (mechanical, piezo)
- Magnetic shield He jacket with sliding support mechanism
- Alignment method
- Input coupler
- Beam pipe flange & vacuum seal
- Feed-through connector
- Monitor cables
- Thermal anchors
- Bolts & nuts

They seems to be sub-component which are easy to get from industry. Their technology can be compared, unified for ILC. Need to wait until three region have some experience of them.

End of slides