

Ion Backdrift Simulation in a GEM-based TPC

Astrid Münnich

Sven Lotze Joachim Mnich Stefan Roth Michael Weber

III. Physikalisches Institut B

International Linear Collider Workshop

DESY Hamburg 2007

- Create primary ionisation based on parametrisations of HEED data
- Drifting of electrons based on parametrisations of Magboltz data
- 3. Gas amplification with GEMs based on parametrisation of charge transfer
- 4. Electronics (shaper, ADC)

- Create primary ionisation based on parametrisations of HEED data
- Drifting of electrons based on parametrisations of Magboltz data
- Gas amplification with GEMs based on parametrisation of charge transfer
- 4. Electronics (shaper, ADC)

- Create primary ionisation based on parametrisations of HEED data
- Drifting of electrons based on parametrisations of Magboltz data
- Gas amplification with GEMs based on parametrisation of charge transfer
- 4. Electronics (shaper, ADC)

- Create primary ionisation based on parametrisations of HEED data
- Drifting of electrons based on parametrisations of Magboltz data
- Gas amplification with GEMs based on parametrisation of charge transfer
- 4. Electronics (shaper, ADC)

Ion backdrift in ILC TPC

One ion slice per bunch train mainly due to background

Ion Backdrift Module

Goal:

Compute ion distribution in slice created by one bunch train

Input:

- Particles from 100 BX pair background from full detector simulation with MOKKA (A. Vogel)
- Detailed simulation gives electrons detected on one pad (before electronics module)
- Ion backrift propability for given GEM setting according to charge transfer parametrisation

Output:

Number of ions drifting back from a pad through GEM stack

Ion backdrift: 2D

Back drifting ions from pad plane

Ion backdrift: 3D

Ion slice in 3D

Ion backdrift in ILC TPC (3)

Radial distribution of charge from 100 BX pair background

Outlook

Possible use:

- Test different GEM settings, drift gases, background studies
- Use ion density in slice as input for field map studies of distortions

Concerning primary ionisation:

Use electrons from primary ionisation module to represent ions

Simulation framework is part of MarlinTPC package:

https://twiki.cern.ch/twiki/bin/view/ILCTPC/MarlinTPC