

Comparison of different Particle Flow Algorithms

first preliminary results:

introduction physics process & simulation reconstruction & analysis preliminary results

Physics Process

- Higgssthralung, higgs with mass
 = 120 GeV
 - Z decays mostly hadronicaly -> 2
 jets (~10% into leptons excluded)
 - h decays mostly hadronicaly -> 2
 jets
- final state topology: 4-jet events
 - inv. mass of 2 jets Z mass
 - inv. mass of other 2 jets h mass

Signal Sample

- Higgssthralung generated with PYTHIA
- detector response simulated with Mokka
- reconstruction done using Marlin
 - digitalization
 - Track Cheater
 - various PFAs
- analysis done using Marlin & ROOT

- center-of-mass energy: 500GeV
- full detector simulation, LDC00 model
- long process, done using
 GRID (big thanks to Dennis:)

- Satoru jet finder using Particle
 Collections from different PFAs
- RAIDA

Particle Flow Algorithms

 WOLF (author A. Rasparenza) cluster-based particle flow algorithm (PFA)

- PANDORA (author M. Thompson)
- cluster-based PFA but using track information as well
- TrackBasedPFAlgorithm (author O. Wendt)
- track based particle flow;)
- tuned for 250 GeV CME

 for details on PFAs check dedicated talks!

Jet Finding

- Satoru jet finder used -Marlin processor
 - creates new
 ReconstructedParticles
 - uses Durham algorithm
 - can be used with variable y cut if forced to n-jets
 - can be used with fixed y cut
- in this analysis y cut tuned to get best ratio of 4-jet events (as expected from process topology)

- only 4-jet events used
- v. similar #jets distribution
- 4-jet reconstruction efficiency
 - about 50%

Jet Invariant Mass

4 final state particles -> 4 jets -> 6 combinations of di-jets
 -> big, wide combinatorical background, Z and h together

- do constrained fit (energy&momentum conservation) with 1 di-jet mass constrained to Z (not done yet)
- take only 3 di-jet combinations, smaller di-jet mass assumed to be Z, bigger mass assumed to be h (this analysis)

Total 4-Jet Energy

- Pandora total 4-jet energy narrowest
- WOLF and TBPFlow comparable
- energies a bit shifted
- ISR & beamsthralug losses visible

Z and h Di-Jet Energy

- Pandora and TBPFlow no visible Z-energy peak
- Pandora also wide but peak visible
 - combinatorical background

- Pandora h-energy shifted versus WOLF & TBPFlow Zenergy
- Pandora "slimmest", TBPFlow widest

Z and h Di-Jet Mass

- Pandora Z-mass shifted versus WOLF & TBPFlow Z-mass
- Pandora narrowest, clear difference

- Pandora h-mass shifted versus
 WOLF & TBPFlow h-mass
- Pandora "slimmest" but differences not so big

Z Di-Jet Mass

- WOLF & TBPFlow overestimate Z mass, Pandora underestimates
- Pandora norrower by a factor of 2
- flat (wide)combinatorical background
 - can be reduced by using constrained fit (energy, momentum, Z-mass constrains)

H Di-Jet Mass

- second small peak for Pandora (from Z? too close?)
- h mass too small for all PFAs
- Pandora narrowest(but with extra peak), WOLF & TBPFlow comparable
- Pandora behavior needs more studies

Summary & Conclusions

- 3 different PFAs were studied using jets from ZH @ 500 GeV
 - cluster based (WOLF)
 - track based (TBPFlow)
 - mixed (Pandora)
- Pandora shows best behavior, others can be tuned (probably)
- need more studies (ex. proper constrained fit for invariant mass distributions)