High-precision tests of the MSSM with GigaZ

Georg Weiglein

IPPP Durham

DESY, 05/2007

In collaboration with S. Heinemeyer, W. Hollik, A. Weber

- Introduction
- New results for electroweak precision observables in the MSSM with \mathcal{CP} -violating phases
- Numerical analysis
- Conclusions

Introduction

Electroweak precision physics \Leftrightarrow sensitivity to loop effects

Introduction

Electroweak precision physics \Leftrightarrow sensitivity to loop effects

Example: indirect constraints on $M_{\rm H}$ in the SM

 \Rightarrow Increasing tension between indirect bounds on $M_{\rm H}$ in the SM and direct search limit

[LEPEWWG '07]

Bounds on the light Higgs mass in the CMSSM with dark matter constraints

 χ^2 fit for $M_{\rm h}$ from electroweak precision observables and *b*-physics observables, without imposing direct search limit: [*J. Ellis, S. Heinemeyer, K. Olive, A. Weber, G. W. '07*]

 \Rightarrow Much less tension than in SM, best fit value $\gtrsim 110 \text{ GeV}$

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles:

$$\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} \quad \text{Spin } \frac{1}{2}$$
$$\begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} \quad \text{Spin } 0$$
$$a \quad W^{\pm} \quad H^{\pm} \quad \propto Z \quad H^{0}_{1} \quad H^{0}_{2} \qquad \text{Spin } 1 \text{ / Spin } 0$$

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles:

$$\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} \quad \text{Spin } \frac{1}{2}$$
$$\begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} \quad \text{Spin } 0$$

Enlarged Higgs sector: two Higgs doublets, physical states: h^0, H^0, A^0, H^{\pm}

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles:

 $\begin{bmatrix} u, d, c, s, t, b \end{bmatrix}_{L,R} \begin{bmatrix} e, \mu, \tau \end{bmatrix}_{L,R} \begin{bmatrix} \nu_{e,\mu,\tau} \end{bmatrix}_{L} \quad \text{Spin } \frac{1}{2}$ $\begin{bmatrix} \tilde{u}, \tilde{d}, \tilde{c}, \tilde{s}, \tilde{t}, \tilde{b} \end{bmatrix}_{L,R} \begin{bmatrix} \tilde{e}, \tilde{\mu}, \tilde{\tau} \end{bmatrix}_{L,R} \begin{bmatrix} \tilde{\nu}_{e,\mu,\tau} \end{bmatrix}_{L} \quad \text{Spin } 0$

Enlarged Higgs sector: two Higgs doublets, physical states: h^0, H^0, A^0, H^{\pm}

General parametrisation of possible SUSY-breaking terms \Rightarrow free parameters, no prediction for SUSY mass scale

Constrained MSSM (CMSSM) with restrictions from dark matter relic density

CMSSM characterised by five parameters:

 $m_{1/2}$, m_0 , A_0 (GUT scale), $\tan \beta$, sgn(μ) (weak scale)

⇒ Low-energy spectrum from renormalisation group running lightest SUSY particle: $\tilde{\chi}_1^0$

Cold dark matter (CDM) density (WMAP, ...):

 $0.094 < \Omega_{\rm CDM} h^2 < 0.129$

 \Rightarrow Constraints on SUSY parameter space

χ^2 fit in CMSSM with dark matter constraints:

 $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $(g-2)_{\mu}$, ${\rm BR}(b \to s\gamma)$

[J. Ellis, S. Heinemeyer, K. Olive, A. Weber, G. W. '07]

 $\tan \beta = 10$:

Higgs bound from LEP: full likelihood information and theory uncertainty included in the fit

 \Rightarrow very good description of the data

preference for relatively small mass values

 \Rightarrow good prospects for the LHC and the ILC

Electroweak precision observables (EWPO): present status vs. GigaZ / MegaW precision

obs.	exp. cent. value	$\sigma^{ m today}$	$\sigma^{ m LHC}$	$\sigma^{ m ILC}$
$M_{\rm W} [{\rm GeV}]$	80.398	0.025	0.015	0.007
$\sin^2 heta_{ m eff}$	0.23153	0.00016	$20-14 \times 10^{-5}$	1.3×10^{-5}
$\Gamma_Z [\text{GeV}]$	2.4952	0.0023		0.001
R_l	20.767	0.025		0.01
R_b	0.21629	0.00066		0.00014
$\sigma_{ m had}^0$	41.540	0.037		0.025

\Rightarrow Large improvement at the ILC

Theoretical predictions for EWPO

Sources of theoretical uncertainties:

Unknown higher-order corrections

Theoretical predictions for EWPO

Sources of theoretical uncertainties:

- Unknown higher-order corrections
- Parametric uncertainty induced by the experimental errors of the input parameters Dominant effect: experimental error of m_t \Rightarrow ILC will yield improvement by an order of magnitude exp. error on m_t : $\approx 1 \text{ GeV} \xrightarrow{\text{ILC} + \text{GigaZ}} 0.1 \text{ GeV}$

New results for electroweak precision observables in the MSSM CP-violating phases

New results for M_W and Z observables $\sin^2 \theta_{eff}$, Γ_Z , R_l , R_b , σ_{had}^0 :

Complete one-loop results with complex parameters + inclusion of all available higher-order corrections

[S. Heinemeyer, W. Hollik, D. Stöckinger, A.M. Weber, G. W. '06]

[S. Heinemeyer, W. Hollik, A.M. Weber, G. W. '07]

New results for electroweak precision observables in the MSSM CP-violating phases

New results for M_W and Z observables $\sin^2 \theta_{eff}$, Γ_Z , R_l , R_b , σ_{had}^0 :

Complete one-loop results with complex parameters + inclusion of all available higher-order corrections [S. Heinemeyer, W. Hollik, D. Stöckinger, A.M. Weber, G. W. '06] [S. Heinemeyer, W. Hollik, A.M. Weber, G. W. '07]

Theoretical evaluation in the SM is more advanced than in the MSSM \Rightarrow incorporation of state-of-the-art SM results using

$$O^{\text{MSSM}} = \underbrace{O^{\text{SM}}}_{(a)} + \underbrace{O^{\text{MSSM}-\text{SM}}}_{(b)}$$

(a): full SM result

(b): difference between SM and MSSM, evaluated at the level of precision of the known MSSM corrections

Complete one-loop results with complex parameters + higher-order corrections [S. Heinemeyer, W. Hollik, A. Weber, G. W. '07]

If $Z \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ is kinematically allowed \Rightarrow yields contribution to invisible width of the Z boson

CP-violating loop effects

Higher-order corrections to M_W , $\sin^2 \theta_{eff}$, M_h , ... are affected by CP-violating effects from complex phases

CP-violating loop effects

Higher-order corrections to M_W , $\sin^2 \theta_{eff}$, M_h , ... are affected by CP-violating effects from complex phases

MSSM Higgs sector is CP-conserving at tree level

Complex parameters enter via (often large) loop corrections:

- $-\mu$: Higgsino mass parameter
- $-A_{t,b,\tau}$: trilinear couplings
- $-M_{1,2}$: gaugino mass parameter (one phase can be eliminated)
- $-m_{\tilde{g}}$: gluino mass

 $\Rightarrow CP$ -violating mixing between neutral Higgs bosons h_1 , h_2 , h_3

CP-violating case (CPX scenario): LEP exclusion bounds

[LEP Higgs Working Group '06]

 \Rightarrow no lower limit on M_{h_1} : light SUSY Higgs not ruled out! sensitive dependence on m_t

Incorporation of higher-order corrections from the Higgs sector

Higgs sector enters EWPO only via loop corrections

⇒ For one-loop corrections to EWPO it would in principle be sufficient to treat the Higgs sector in leading order, i.e. at the tree level

However:

Tree-level mass of light MSSM Higgs boson is below the SM exclusion bound on $M_{\rm H}$

⇒ Treating the MSSM Higgs sector at tree level leads to artificially large contributions to EWPO from the light MSSM Higgs boson

Incorporation of higher-order corrections from the Higgs sector

- Large higher-order corrections in the MSSM Higgs sector:
- ⇒ Correction to upper bound on m_h of about 50% large corrections to Higgs couplings CP-violating mixing

⇒ Important to consistently incorporate leading higher-order corrections in the MSSM Higgs sector into the predictions for the EWPO

Higher-order corrections in the MSSM Higgs sector with CP-violating phases

Mixing between h, H, A

⇒ loop-corrected masses obtained from propagator matrix

$$\Delta_{hHA}(p^2) = -\left(\hat{\Gamma}_{hHA}(p^2)\right)^{-1}, \quad \hat{\Gamma}_{hHA}(p^2) = i\left[p^2\mathbb{1} - \mathcal{M}_n(p^2)\right]$$

where

$$M_{n}(p^{2}) = \begin{pmatrix} m_{h}^{2} - \hat{\Sigma}_{hh}(p^{2}) & -\hat{\Sigma}_{hH}(p^{2}) & -\hat{\Sigma}_{hA}(p^{2}) \\ -\hat{\Sigma}_{hH}(p^{2}) & m_{H}^{2} - \hat{\Sigma}_{HH}(p^{2}) & -\hat{\Sigma}_{HA}(p^{2}) \\ -\hat{\Sigma}_{hA}(p^{2}) & -\hat{\Sigma}_{HA}(p^{2}) & m_{A}^{2} - \hat{\Sigma}_{AA}(p^{2}) \end{pmatrix}$$

$$\Rightarrow$$
 Higgs propagators: $\Delta_{ii}(p^2) = \frac{i}{p^2 - m_i^2 + \hat{\Sigma}_{ii}^{\text{eff}}(p^2)}$

Higher-order corrections in the MSSM Higgs sector with CP-violating phases

$$\hat{\Sigma}_{ii}^{\text{eff}}(p^2) = \hat{\Sigma}_{ii}(p^2) - i \frac{2\hat{\Gamma}_{ij}(p^2)\hat{\Gamma}_{jk}(p^2)\hat{\Gamma}_{ki}(p^2) - \hat{\Gamma}_{ki}^2(p^2)\hat{\Gamma}_{jj}(p^2) - \hat{\Gamma}_{ij}^2(p^2)\hat{\Gamma}_{kk}(p^2)}{\hat{\Gamma}_{jj}(p^2)\hat{\Gamma}_{kk}(p^2) - \hat{\Gamma}_{jk}^2(p^2)}$$

Complex pole \mathcal{M}^2 of each propagator is determined from

$$\mathcal{M}_i^2 - m_i^2 + \hat{\Sigma}_{ii}^{\text{eff}}(\mathcal{M}_i^2) = 0,$$

where

$$\mathcal{M}^2 = M^2 - iM\Gamma,$$

Expansion up to first order in Γ around M^2 :

$$M_i^2 - m_i^2 + \operatorname{\mathsf{Re}} \hat{\Sigma}_{ii}^{\operatorname{eff}}(M_i^2) + \frac{\operatorname{Im} \hat{\Sigma}_{ii}^{\operatorname{eff}}(M_i^2) \left(\operatorname{Im} \hat{\Sigma}_{ii}^{\operatorname{eff}}\right)'(M_i^2)}{1 + \left(\operatorname{\mathsf{Re}} \hat{\Sigma}_{ii}^{\operatorname{eff}}\right)'(M_i^2)} = 0$$

High-precision tests of the MSSM with GigaZ, Georg Weiglein, DESY 05/2007 - p.16

Effective mixing matrix U_{eff} obtained from propagator matrix in approximation where all Higgs self-energies are evaluated at $p^2 = 0$:

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}_{p^2=0} = \mathbf{U}_{\text{eff}} \begin{pmatrix} h \\ H \\ A \end{pmatrix}$$

 \Rightarrow unitary matrix

Elements of $\mathbf{U}_{\rm eff}$ can be interpreted as effective couplings of the Higgs bosons, incorporate leading higher-order corrections from Higgs-boson self-energies

Numerical analysis

Dependence on the sfermion mass scale

⇒ Sizable dependence on the sfermion mass scale Drastic improvement with ILC prec. on $M_{\rm W}$, $\sin^2 \theta_{\rm eff}$, $\Gamma_{\rm Z}$, $m_{\rm t}$

High-precision tests of the MSSM with GigaZ, Georg Weiglein, DESY 05/2007 – p.18

Impact of $\Gamma(Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0)$ on the total Z width

 $\mu pprox M_1$, $M_1 \lesssim rac{1}{2}M_2$

 \Rightarrow Large effects possible

Higgs sector at higher orders: impact on $M_{\rm W}$ and $\sin^2 \theta_{\rm eff}$

 \Rightarrow Sizable effects

ILC can probe loop-induced effects from the Higgs sector

Impact of the complex phases ϕ_{A_t} , ϕ_{A_b} in the sfermion sector

Enter only via

$$|X_{t}|^{2} = |A_{t}|^{2} + |\mu \cot \beta|^{2} - 2|A_{t}| \cdot |\mu| \cot \beta \cos(\phi_{A_{t}} + \phi_{\mu})$$

$$|X_{b}|^{2} = |A_{b}|^{2} + |\mu \tan \beta|^{2} - 2|A_{b}| \cdot |\mu| \tan \beta \cos(\phi_{A_{b}} + \phi_{\mu})$$

where $X_t = A_t - \mu^* / \tan \beta$, $X_b = A_b - \mu^* \tan \beta$, $\tan \beta \equiv v_2 / v_1$

⇒ phase dependence only enters via the squark masses and mixing angles

Effects of varying the complex phase ϕ_{A_t} on M_W , $\sin^2 \theta_{eff}$, Γ_Z

⇒ Shift in M_W , $\sin^2 \theta_{eff}$, Γ_Z predictions by 1–2 σ for small $\tan \beta$ Largely improved sensitivity at the ILC

Are the "CPX holes" in agreement with electroweak precision data?

⇒ EWPO yield constraints on parameter space of CPX scenario

ILC precision can have large impact

Sensitivity to the scale of SUSY in a scenario where no

SUSY particles are observed at the LHC

⇒ GigaZ measurement provides sensitivity to SUSY scale, extends the direct search reach of ILC(500)

Prediction for $\sin^2 \theta_{\rm eff}$ (parameter scan): SM vs. MSSM

Prediction for $\sin^2 \theta_{\text{eff}}$ in the SM and the MSSM:

 \Rightarrow ILC precision on $\sin^2 \theta_{\text{eff}}$ and m_t yields drastic improvement

Conclusions

• Results for M_W and Z observables $\sin^2 \theta_{eff}$, Γ_Z , R_l , R_b , σ_{had}^0 : complete one-loop results with complex parameters + inclusion of all available higher-order corrections

Conclusions

- Results for M_W and Z observables $\sin^2 \theta_{eff}$, Γ_Z , R_l , R_b , σ_{had}^0 : complete one-loop results with complex parameters + inclusion of all available higher-order corrections
- Sensitivity to higher-order effects drastically improves with ILC precision on EWPO and m_t

Conclusions

- Results for M_W and Z observables $\sin^2 \theta_{eff}$, Γ_Z , R_l , R_b , σ_{had}^0 : complete one-loop results with complex parameters + inclusion of all available higher-order corrections
- Sensitivity to higher-order effects drastically improves with ILC precision on EWPO and m_t
- ⇒ GigaZ is a highly powerful tool for probing the structure of new physics