Permanent Magnet Final Quad

Y. Iwashita, Kyoto U.,
T. Okugi, T. Tauchi, T. Omori, K. Kuroda, KEK, H. Yamamoto, Tohoku U.,
M. Kumada, NIRS

Permanent Magnet Study Short History

 2002~2005 First R\&D program for FFQ Permanent Magnet Quadrupole for Final FocusLens in a Linear Collider
2002 Fixed strength PMQ
2003 Adjustable PMQ (double ring)
2004 Measurement and fine tuning
2005 Higher gradient at small bore
2006~2009 Second R\&D program

Development and Application of PMQ for Linear
Collider and Neutron optics
2006 Half scale Model of Rapid Cycling
Sextupole
2007~Adjustable PMQ (2nd model)
2008 ...

First prototype (fixed field)

Prototype PMQ

Measurement at SLAC

Bore: ø14, OD ø130, L100, GL=28.5T (290T/m)

The 20mr Variable FFQ Magnet

 Outer Ring

Bore radius	1 cm
Inner ring radii	In 1 cm out 3 cm
Outer ring radii	In 3.3 cm out 5 cm
Outer ring section length Physical length	$1 \mathrm{~cm}, 2 \mathrm{~cm}, 4 \mathrm{~cm}, 8 \mathrm{~cm}$ 23 cm
Pole material	Permendur
Magnet material (inner ring)	NEOMAX38AH
Magnet material (outer ring)	NEOMAX44H
Integrated gradient (strongest)	24.2 T
Integrated gradient (weakest)	3.47 T
Int. gradient step size	1.4 T

Base plate
Before assembly

The 20mr Variable FFQ Magnet

hole for outgoing beam

hole for incoming beam

Magnetic Center Movement

The cm values show the Switched-On-Length
The center moves several $\mu \mathrm{m}$ for 20% strength change.
See http: / / accelconf.web.cern.ch/ AccelConf/104/PAPERS/TUP81.PDF (LINAC'04)

Post Valencia 14 mr Magnet Layout Compatible with Push-Pull

 Brett Parker's sketch of how they be placed as First Cryostat Grouping superconducting quads
\square Actively Shielded

\square
Unshielded
$\times{ }^{\text {® }}$
Passively Shielded

One of these magnet groups is needed in both ends of each detector One of these magnet (move with experiment, groups is needed on each not shared).
For actively shielded coils the shield is run in series with the main quadrupole current but with a trim side of the common pushpull IR hall (fixed position, experiments share). circuit shunt power supply for fine adjustment.

Configurations for Various Crossing Angles

2 mrad.
0 mrad.
(Head-On)

$L^{*}=3.5 \mathrm{~m}$

2 mrad.
$L^{*}=5 \mathrm{~m}$

Outgoing Beam

Crossing angle [mrad]	0	2	20
Outer Diam. [mm]	180	180	100
Max. Gradient [T/m]	180	130	120
Min. Gradient [T/m]	-20	-60	8

14mr option

Gluckstern's skewless variable PMQ

$$
\mathrm{M}=\mathrm{R} \cdot \mathrm{M} 2 \bullet \mathrm{R}^{-2} \bullet \mathrm{M} 1 \bullet \mathrm{R}^{2} \bullet \mathrm{M} 0 \bullet \mathrm{R}^{-2} \bullet \mathrm{M} 1 \bullet \mathrm{R}^{2} \bullet \mathrm{M} 2 \bullet \mathrm{R}^{-1}
$$

$$
4 \mathrm{x} 4 \text { matrix: } \mathrm{M}=\left(\begin{array}{cc}
M x x & O^{5} \\
O^{5} & M y y
\end{array}\right) \text { when } \mathrm{d}=0
$$

R.L. Gluckstern and R.F. Holsinger: Adjustable Strength REC Quadrupoles, IEEE Trans. Nucl. Sci., Vol. NS-30, NO. 4, August 1983, http://epaper.kek.jp/p83/PDF/PAC1983 3326.PDF

$$
\begin{aligned}
& k=\frac{G}{B \rho}
\end{aligned}
$$

$\mathrm{M}=\mathrm{R} \cdot \mathrm{M} 2 \bullet \mathrm{R}^{-2} \cdot \mathrm{M} 1 \cdot \mathrm{R}^{2} \cdot \mathrm{M} 0 \bullet \mathrm{R}^{-2} \bullet \mathrm{M} 1 \cdot \mathrm{R}^{2} \bullet \mathrm{M} 2 \bullet \mathrm{R}^{-1}$
$M=\left(\begin{array}{cc}M x x & M x y \\ M y x & M y y\end{array}\right) \quad M x y=\left(\begin{array}{cc}M x y_{1,1} & f(k, L, d, \alpha) \\ M x y_{2,1} & M x y 2,2\end{array}\right) \ldots L 0=\alpha L$
Solve : $f(k, L, d, \alpha) \approx \sum_{n=0,4} \frac{d^{n}}{d \alpha^{n}} f(k, L, d) \frac{\alpha^{n}}{n!}=0$

$$
\alpha=-458.949,-1.01896,0.318954,460.003
$$

Effect of Skew Component of QD0

Beam profile is defined by tracking with 1000 particles. Accuracy can be seen in the fig.

When luminosity is assumed to be proportional to the OverLap, $\mathrm{SK} 1 / \mathrm{K} 1 \approx<1 \mathrm{e}-5$ is required for $\mathrm{L} / \mathrm{L} 0>\approx 0.93$

Deck used: ilc2006b.ebds1

OverLap is defined by the integration of the product of two Gaussian distribution; w/wo skew error. (Center is assumed to be the same.)
The distribution is constructed with $\langle x x\rangle,\langle y y\rangle$ and <xy>.

by S. Kuroda

Correction with Linear Knob

Since the OverLap seems to be affected more by σy, correction with WaistY, PEY, R1 and R2 knobs were tried.

Case with SK1/K1=1e-4
CorOfSK 1 (QDO)ByLinKnob

Knob:
1(WaistY)
2(PEY)
3(R1)
4(R2)

Final Position of SX Mover

SX name	DX[m]	DY[m]	
SD4	$4.73748 \mathrm{e}-12$	$-7.96327795 \mathrm{e}-7$	
SF1	$1.00814 \mathrm{e}-7$	$3.975626 \mathrm{e}-5$	
SD0	$1.65113 \mathrm{e}-7$	$1.862614 \mathrm{e}-5$	
Max. movement is about 40um for SF1 DY.			

Luminosity can be recovered upto $\approx 93 \%$.

Magnet Error Estimation

Simulation Condition

```
L1 =0.0637909 Beam Energy 250GeV
L2 =0.0500000 G=140 T/m
L3 = 0.0181046 theta = 30 degrees ( K1 = 0.16793 [1/m] )
D = 0.0100000
100 random seeds for each point
```


2.4 mrad @ sigma_Ks/K1 = 0.1\%

Magnet Error Estimation (triplet)

Simulation Condition

$$
\begin{array}{ll}
\mathrm{L} 1 & =0.1000000 \\
\mathrm{~L} 2 & =0.0500000 \\
\mathrm{D} & =0.0100000
\end{array}
$$

$$
\text { Beam Energy } 250 \mathrm{GeV}
$$

$$
\mathrm{G}=140 \mathrm{~T} / \mathrm{m}
$$

$$
\text { theta }=30 \text { degrees }(\mathrm{K} 1=0.16796[1 / \mathrm{m}])
$$

100 random seeds for each point

$1.9 \mathrm{mrad} @$ sigma_Ks/K1 = 0.1\%

Final Focus Optics with Permanent Q

Permanent Mgnet

Unit of magnet

Dimensions
$\mathrm{L}[\mathrm{PMQ} 1]=\mathrm{a}, \mathrm{L}[\mathrm{PMQ} 2]=\mathrm{b}, \mathrm{L}[\mathrm{PMQ} 3]=\mathrm{c}$
a:b:c:=1.81046: 5: 6.37909 (Iwashita)
$2 \mathrm{a}+2 \mathrm{~b}+\mathrm{c}=20 \mathrm{~cm}$
1 cm Drift space between Q ($\mathrm{d}=1 \mathrm{~cm}$)

Qs are rotated by $\theta($ PMQ1,3) and $-\theta($ PMQ2) to adjust K1.
Permanent QD0
As QD0, 12 units of magnet are used.
Total length is 301 cm including half drift spaces at both sides.

Installation of Permanent QD0
Starting with 'ilc2006b.ilcbds1'(14 mrad version)
Since the original QD0 is of 2.2 m length, adjustment of drift space is required to keep the total length unchanged.

$$
\begin{aligned}
& \text { D1B(QF1-SD0) L: } 1.35 \rightarrow 0.945 \mathrm{~m} \\
& \text { D0 }\left(L^{*}\right) \mathrm{L}: 3.51 \rightarrow 3.105 \mathrm{~m}
\end{aligned}
$$

Procedure of Fine Tuning for Optics with Permanent Q

Starting with 'ilc2006b.ilcbds1'(14 mrad version), permanent QD0 is installed.

1. Linear Optics Matching

Since the permanent QD0 changed not only α^{*} and β^{*} but also η^{*}, we need to adjust some Q in dispersion region(FF section). QF1 is chosen as that knob because there is no change of transfer matrices between SXs upstream.
Variables for the matching:
K 1 of QM (matching Q) and QF 1
θ of PMQ(Fixed field gradient of $140 \mathrm{~T} / \mathrm{m}$ is assumed)
Matching requirement:

$$
\alpha x=\alpha y=0, \beta x=0.021 m, \beta y=400 u m, \eta x=0 \text { at IP }
$$

Final θ of PMQ is 6.58 degree.
2. Off-Momentum Matching

Since the FF optics downstream of QF1 has been changed, we need to re-optimize K2 of SXs.
3. Fine Tuning of K2 of SXs looking at the beam size at IP.

Final beam size obtained: $\sigma x / \sigma y=656 / 5.44 n m$ for $\gamma \varepsilon \mathrm{x} / \gamma \varepsilon \mathrm{y}=9.2 \mathrm{e}-6 / 3.4 \mathrm{e}-8 \mathrm{~m}$ and $\sigma \delta=6 \mathrm{e}-4$.
($636 / 5.25 \mathrm{~nm}$ for original design)

	DP				
	$-6 \mathrm{e}-4$	$-3 \mathrm{e}-4$	0	$3 \mathrm{e}-4$	$6 \mathrm{e}-4$
$\alpha \mathrm{x}$	-0.0372	-0.0184	$-3.22 \mathrm{e}-7$	0.0180	0.0357
$\beta \mathrm{x}$	0.0210	.0210	0.0210	0.0210	00210
αy	0.252	0.124	$7.82 \mathrm{e}-6$	-0.120	-0.236
βy	$4.19 \mathrm{e}-4$	$4.03 \mathrm{e}-4$	$4.00 \mathrm{e}-4$	$4.09 \mathrm{e}-4$	$4.30 \mathrm{e}-4$
$\eta \mathrm{x}$	$7.48 \mathrm{e}-6$	$3.62 \mathrm{e}-6$	$6.16 \mathrm{e}-11$	$-3.37 \mathrm{e}-6$	$-6.50 \mathrm{e}-6$

QNAME	K1[1/m]		
	before	after	
QM16	-0.00876	-0.00829	
QM15	-0.00200	0.00128	
QM14	0.00898	0.0156	
QM13A	-0.0110	0.0117	
QM13B	0.0423	0.0429	
QM12	-0.0190	-0.0321	
QM11	0.0179	0.0201	
QF1	0.0963	0.0994	

SXNAME	K2[1/m^2]	
	before	after
SF6	0.843	0.888
SF5	-0.217	-0.188
SD4	1.65	1.68
SF1	-1.09	-1.26
SD0	2.32	2.51

Strength of SF1\&SD0 must be checked.

by S. Kuroda

Optics with Permanent Q

Original optics

Optics with permanent QD0

Optics with permanent QD0 is somewhat ugly.
Need to restore symmetry around the B section of $\mathrm{s} \approx 2200 \mathrm{~m}$?
Optimization is not perfect (e.g. Octupole magnets were not touched...).
Need someone to complete the design.
deck file is available at SAD computer:
'/users/kuroda/sad/jlc/ilc2006b.ebds 1ForPMQ’

Single Ring Train Configuration

	Eff.L $[\mathrm{m}]$	$\mathrm{R}[\mathrm{cm}]$	kG	kG / m	$\mathrm{GL}[\mathrm{kG}]$
QF1	2.0	1	8	803	1605
QD0	2.2	1	-14.2	-1416	-3116
QEX1	1.1	1.5	-15.0	-1000	-1060

Rough sketch

QD0

QDEX1
$\varnothing 20$ beam pipe is assumed:
Joule heating by image current becomes $0.05 \mathrm{~W} / \mathrm{m}$ (H.Yamamoto) HOM heating seems more.

14mr option

Alternative configuration: A Simple PMQ

Alternative configuration: A Simple PMQ

A Possible Configuration with Simple PMQ

Q 20\% strength will be achieved by flipping 40\% PMQ's.
The step size can be reduced by sub
Fine adjustment by electromagnet.
The center shift should be investigated for this config.
Q $\varnothing 20 \mathrm{~mm}$ bore enough all along the 2.2 m OD0?

Summary

Q 1st variable PMQ was based on double-ring structure (for 20 mr) and evaluated.
Q 2nd one (for 14 mr) will have 5-ring-singlet structure whose skew effect can be canceled with appropriate ratios in lengths.
Q The strength can be changed continuously.

- The stray flux outside PMQ can be small.
- PM only structure withstands higher external field. There is no vibration source in PMQ. Image current heating of beam pipe has to be study.
Q A prototype will be fabricated this FY.

