Tools for NNLO QCD calculations

Thomas Gehrmann

Universität Zürich

LCWS/ILC Workshop DESY 2007

Precision physics with QCD

- precise determination of
 - strong coupling constant
 - quark masses
 - electroweak parameters
- precise predictions for
 - new physics effects
 - and their backgrounds

Precision QCD Observables at ILC

Standard model parameters from

- **Solution** Three-jet production and event shapes: α_s
- **forward-backward asymmetry of heavy quarks**: $\sin^2 \Theta_W$
- top quark pair production in the continuum: top quark properties

All precision QCD observables contain detailed final state information (jet clustering, top quark reconstruction) \longrightarrow exclusive observables (jet cross sections)

Jets in Perturbation Theory

Tools for NNLO QCD calculations - p.4

NNLO calculations

Infrared poles

- infrared poles appear in all contributions
- can not add contributions before integration
- must compute each individual divergent contribution (typically in dimensional regularisation)
- \checkmark must separate poles and finite terms, Laurent expansion in regulator $\epsilon = (4 d)/2$

Possible approaches: loop integrals

- Analytical computation
- Numerical computation of all Laurent coefficients (sector decomposition, contour deformation, Mellin-Barnes)

Possible approaches: phase space integrals

- Numerical computation of all Laurent coefficients (sector decomposition)
- Analytical extraction of infrared poles (subtraction method), numerical computation of finite remainder

Sector decomposition

K. Hepp; M. Roth, A. Denner; T. Binoth, G. Heinrich;

- C. Anastasiou, K. Melnikov, F. Petriello
 - start from parameter representation
 - disentangle overlapping singularities by partial fractioning
 - expand regulators in distributions
 - decompose integration regions into sectors containing only single type of singularity
 - compute Laurent coefficients of sector integrals numerically
 - Applications
 - virtual two-loop and three-loop four-point functions
 T. Binoth, G. Heinrich
 - NNLO corrections to $pp \rightarrow (H/V) + X$, μ -decay C. Anastasiou, K. Melnikov, F. Petriello
 - sparticle mass effects in SUSY Higgs production
 C. Anastasiou, S. Beerli, A. Daleo

Reduction to Master Integrals

- analytically reduce large number of different loop integrals to few master integrals
- Integration-by-parts identities (IBP)

K. Chetyrkin, F. Tkachov

$$\int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\mathrm{d}^d l}{(2\pi)^d} \frac{\partial}{\partial a^\mu} \left[b^\mu f(k,l,p_i) \right] = 0$$

with: $a^{\mu}=k^{\mu}, l^{\mu}$ and $b^{\mu}=k^{\mu}, l^{\mu}, p^{\mu}_i$

Lorentz invariance identites (LI) E. Remiddi, TG

$$\int \frac{\mathrm{d}^d k}{(2\pi)^d} \frac{\mathrm{d}^d l}{(2\pi)^d} \delta \varepsilon^{\mu}_{\nu} \left(\sum_i p_i^{\nu} \frac{\partial}{\partial p_i^{\mu}} \right) f(k,l,p_i) = 0$$

automated solution (S. Laporta)

also possible for phase space integrals (C. Anastasiou, K. Melnikov)

Mellin-Barnes integration

V. Smirnov, J.B. Tausk

- disentangle loop propagators using Mellin-Barnes representation
- perform analytical continuation in all integration variables to allow $\epsilon \rightarrow 0$ MB-package (M. Czakon)
- perform Mellin-Barnes integrals analytically or numerically M. Czakon; C. Anastasiou, A. Daleo
- Applications
 - massless two-loop four-point functions: $q\bar{q} \rightarrow q\bar{q}$ V. Smirnov, J.B. Tausk
 - expansion of massive two-loop four-point functions: $e^+e^- \rightarrow e^+e^-$ S. Actis, M. Czakon, J. Gluza, T. Riemann

Massive from massless amplitudes

exploit universal infrared structure to construct high energy limit of massive amplitudes, up to m^2/s ; Application: $q\bar{q} \rightarrow Q\bar{Q}$ M. Czakon, A. Mitov, S. Moch

Differential equations

A. Kotikov; E. Remiddi, TG

- Master integrals fulfil inhomogeneous differential equations in external invariants
- For example:

- Applications:
 - master integrals for $\gamma^* \rightarrow q\bar{q}g$ E. Remiddi, TG
 - master integrals for $\gamma^* \rightarrow Q\bar{Q}$ R. Bonciani, P. Mastrolia, E. Remiddi
 - some master integrals for e⁺e⁻ → e⁺e⁻
 R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi, J. van der Bij
 M. Czakon, J. Gluza, T. Riemann

Virtual Corrections at NNLO

Virtual two-loop matrix elements are available for:

	Bhabha-Scattering: $e^+e^- \rightarrow e^+e^-$
	Z. Bern, L. Dixon, A. Ghinculov R. Bonciani, A. Ferroglia, P. Mastrolia, F. Remiddi, J. van der Bij
	S. Actis, M. Czakon, J. Gluza, T. Riemann
_	Hadron-Hadron 2-Jet production: $qq' \rightarrow qq'$, $q\bar{q} \rightarrow q\bar{q}$, $q\bar{q} \rightarrow gg$, $gg \rightarrow gg$ C. Anastasiou, N. Glover, C. Oleari, M. Yeomans-Tejeda Z. Bern, A. De Freitas, L. Dixon
_	Photon pair production at LHC: $gg \rightarrow \gamma\gamma$, $q\bar{q} \rightarrow \gamma\gamma$ Z. Bern, A. De Freitas, L. Dixon C. Anastasiou, N. Glover, M. Yeomans-Tejeda
٩	Three-jet production: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}g$ L. Garland, N. Glover, A.Koukoutsakis, E. Remiddi, TG S. Moch, P. Uwer, S. Weinzierl

- DIS (2+1) jet production: $\gamma^*g \rightarrow q\bar{q}$, Hadronic (V+1) jet production: $qg \rightarrow Vq$ E. Remiddi, TG
- Matrix elements with internal masses: $\gamma^* \rightarrow Q\bar{Q}$ W.Bernreuther, R.Bonciani, R.Heinesch, T.Leineweber, P.Mastrolia, E.Remiddi, TG

Real Corrections at NNLO

Infrared subtraction terms

 $m + 2 \rightarrow m + 1$ pseudopartons $\rightarrow m$ jets:

- Double unresolved configurations:
 - triple collinear

m+2 partons $\rightarrow m$ jets:

- double single collinear
- soft/collinear
- double soft
- J. Campbell, E.W.N. Glover; S. Catani, M. Grazzini

Issue: find subtraction functions which

- approximate full m + 2 matrix element in all singular limits
- are sufficiently simple to be integrated analytically

- Single unresolved configurations:
 - collinear
 - soft

NLO Subtraction

Structure of NLO *m*-jet cross section (subtraction formalism): Z. Kunszt, D. Soper

$$\mathrm{d}\sigma_{NLO} = \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NLO}^R - \mathrm{d}\sigma_{NLO}^S \right) + \left[\int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NLO}^S + \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NLO}^V \right]$$

 $\int d\sigma_{NLO}^R - d\sigma_{NLO}^S$: free of divergences, can be integrated numerically

General methods at NLO

Dipole subtraction

S. Catani, M. Seymour; NNLO: S. Weinzierl

E-prescription

S. Frixione, Z. Kunszt, A. Signer; NNLO: S. Frixione, M. Grazzini; G. Somogyi, Z. Trocsanyi, V. Del Duca

Antenna subtraction

D. Kosower; J. Campbell, M. Cullen, N. Glover; A. Daleo, D. Maitre, TG NNLO: A. Gehrmann-De Ridder, E.W.N. Glover, TG

NNLO Infrared Subtraction

Structure of NNLO *m*-jet cross section:

$$\begin{split} \mathrm{d}\sigma_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{NNLO}^R - \mathrm{d}\sigma_{NNLO}^S \right) \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NNLO}^{V,1} - \mathrm{d}\sigma_{NNLO}^{VS,1} \right) \\ &+ \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NNLO}^{V,2} + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{NNLO}^S + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{VS,1} , \end{split}$$

$$\ \, {\rm d}\sigma^S_{NNLO}: \ \, {\rm real\ radiation\ subtraction\ term\ for\ } {\rm d}\sigma^R_{NNLO}$$

- $d\sigma^{V,2}_{NNLO}$: two-loop virtual corrections

Each line above is finite numerically and free of infrared ϵ -poles \longrightarrow numerical programme

Antenna Subtraction: Double Real

Two colour-connected unresolved partons

Phase space factorisation

 $d\Phi_{m+2}(p_1,...,p_{m+2};q) = d\Phi_m(p_1,...,\tilde{p}_I,\tilde{p}_L,...,p_{m+2};q) \cdot d\Phi_{X_{ijkl}}(p_i,p_j,p_k,p_l;\tilde{p}_I+\tilde{p}_L)$

Integrated subtraction term (analytically)

$$|\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{X_{ijkl}} X_{ijkl}^{0} \sim |\mathcal{M}_{m}|^{2} J_{m}^{(m)} d\Phi_{m} \int d\Phi_{4} |M_{ijkl}^{0}|^{2}$$

Four-particle inclusive phase space integrals are known A. Gehrmann-De Ridder, G. Heinrich, TG

Antenna Subtraction: Real/Virtual

Single unresolved limit of one-loop amplitudes

$$Loop_{m+1} \xrightarrow{j \ unresolved} Split_{tree} \times Loop_m + Split_{loop} \times Tree_m$$

Z. Bern, L.D. Dixon, D. Dunbar, D. Kosower; S. Catani, M. Grazzini; D. Kosower, P. UwerZ. Bern, V. Del Duca, W.B. Kilgore, C.R. SchmidtZ. Bern, L.D. Dixon, D. Kosower; S. Badger, E.W.N. Glover

Antenna Subtraction

Antenna Functions

- colour-ordered pair of hard partons (radiators) with radiation in between
 - hard quark-antiquark pair
 - hard quark-gluon pair
 - hard gluon-gluon pair
- \checkmark three-parton antenna \longrightarrow one unresolved parton
- **four-parton antenna** \longrightarrow two unresolved partons
- can be at tree level or at one loop
- all three-parton and four-parton antenna functions can be derived from physical matrix elements, normalised to two-parton matrix elements
 - $q\bar{q}$ from $\gamma^* \to q\bar{q} + X$
- recent results: $e^+e^- \rightarrow 3j$, $e^+e^- \rightarrow Q\bar{Q}$ (ongoing)

Numerical Implementation

Structure of $e^+e^- \rightarrow 3$ jets program:

A. Gehrmann-De Ridder, E.W.N. Glover, G. Heinrich, TG

Numerical Implementation

Parton-level event generator

Starting point $e^+e^- \rightarrow 4$ jets at NLO (EERAD2: J. Campbell, M. Cullen, N. Glover)

- contains already 4-parton and 5-parton matrix elements
- is based on NLO antenna subtraction

modified phase space generation: matrix element

- decompose phase space into wedges, according to relative size of invariants
 - each wedge contributes only to some unresolved regions
 - angular correlations cancel out (at least to large part) by combining several wedges

modified phase space generation: antenna subtraction terms

- uniform mapping of antenna phase space (D. Kosower)
- requires ordering of unresolved emissions

checks

- Independence on phase space cut y_0
- Iocal cancellations along phase space trajectories
- distributions in raw phase space variables

Summary and Conclusions

- Interpretation of precision data often requires NNLO corrections
- wide spectrum of new techniques
- analytical approaches to loop and phase space integrals
 - reduction to master integrals
 - Mellin-Barnes integration
 - differential equations
 - mass expansions, massive/massless relations
- numerical approaches to loop and phase space integrals
 - sector decomposition
 - Mellin-Barnes integration
- implementation into parton-level event generator
 - allows computation of exclusive observables
 - requires subtraction method, e.g. antenna subtraction
- NNLO exclusive results:

 $pp \rightarrow H + X$, $pp \rightarrow V + X$, $e^+e^- \rightarrow 3j$, more in progress