Status reports from the GRACE Group

Yoshiaki Yasui (Tokyo management college)

KEK Minamitateya collaboration

GRACE/FORM Collaboration with J.Vermaseren (NIKHEF)

new version of GRACE/LOOP with FORM EW one-loop 2 to 2, 2 to 3 is now working

• $hh \rightarrow hh zz \rightarrow hh ww \rightarrow ww ee \rightarrow tth etc.etc.$

successfully optimized

▶ww→ww source size

reduce version 212Mb form version 79Mb
 * two or tree times faster than reduce version!!

• $ee \rightarrow ee \gamma \iff$ uncontrollable with reduce

LCWS07 DESY

GRACE/SUSY M.Kuroda et.al.

- MSSM at 1-loop
 - up to $2 \rightarrow 2$ and $1 \rightarrow 3$ amplitudes
- On-shell renormalization scheme
 - On-shell conditions by Kuroda
 - Gauge bosons, Fermions, Scalar fermions
 - (A^0, H^0) $(\chi_1^0, \chi_1^+, \chi_2^+)$

3-body chargino decays

parameter sets

$\frac{\tan\beta}{10.00}$	μ 399.15	M_1 100.13	M_2 157.53	$\frac{M_3}{610}$	M_{A^0} 431	0				
$m_{\tilde{u}_1}$	$m_{\tilde{u}_2}$	$m_{\tilde{d}_1}$	$m_{\tilde{d}_2}$	$m_{\tilde{e}}$	1	$m_{\tilde{e}_2}$	$m_{\tilde{\nu}_e}$	$\cos \theta_u$	$\cos \theta_d$	$\cos \theta_e$
506.48	524.14	506.07	530.14	163.	.22	187.37	169.64	9.4×10^{-5}	8.5×10^{-4}	9.1×10^{-5}
$m_{\tilde{c}_1}$	$m_{\tilde{c}_2}$	$m_{\tilde{s}_1}$	$m_{\tilde{s}_2}$	$-m_{ ilde{\mu}}$	ž1	$m_{\tilde{\mu}_2}$	$m_{\tilde{\nu}_{\mu}}$	$\cos \theta_c$	$\cos \theta_s$	$\cos \theta_{\mu}$
506.47	524.16	506.07	530.14	163.	.19	187.38	169.64	0.033	1.6×10^{-5}	0.019
$m_{\tilde{t}_1}$	$m_{\tilde{t}_2}$	$m_{\tilde{b}_1}$	$m_{\tilde{b}_2}$	$m_{\tilde{\tau}}$	- 1	$m_{\tilde{\tau}_2}$	$m_{\tilde{\nu}_{\tau}}$	$\cos \theta_t$	$\cos \theta_b$	$\cos \theta_{ au}$
345.37	556.78	469.43	507.15	150.	.07	190.39 <	7170.02	0.5567	0.9266	0.271

\rightarrow 2 body decays of χ_1^+ are kinematically forbidden

	$\Gamma_0 \ ({\rm GeV})$	$\Gamma ({\rm GeV})$	$\delta\Gamma/\Gamma_0$	Br
$\tilde{\chi}_1^+ \to e^+ \nu_e \tilde{\chi}_1^0$	4.42×10^{-6}	4.48×10^{-6}	+9.4%	20.18%
$\tilde{\chi}_1^+ \to \mu^+ \nu_\mu \tilde{\chi}_1^0$	4.42×10^{-6}	4.48×10^{-6}	+9.4%	20.18%
$\tilde{\chi}_1^+ \to \tau^+ \nu_\tau \tilde{\chi}_1^0$	6.46×10^{-6}	7.22×10^{-6}	+11.8%	30.09%
$\tilde{\chi}_1^+ \to u \bar{d} \tilde{\chi}_1^0$	3.35×10^{-6}	3.55×10^{-6}	$\begin{cases} -0.2\% (\text{ELWK}) \\ +6.3\% (\text{QCD}) \end{cases}$	14.81%
$\tilde{\chi}_1^+ \to c \bar{s} \tilde{\chi}_1^0$	3.33×10^{-6}	$\begin{array}{c} 3.54 \times 10^{-6} \\ {\rm sp} \end{array}$	$\begin{cases} -0.2\% (\text{ELWK}) \\ +6.3\% (\text{QCD}) \end{cases}$	14.74%
	LCWS07 DESY			

LHC/QCD etc.

LHC NLO project

- New Collaboration between France & Japan
 - · LAPP ATLAS group & ATLAS Japan
- Diphox system
 - target process $H \rightarrow \gamma \gamma$
 - > Talk in Les Houches by Kurihara
 - 11-29 June 2007

Loop Calculations

GOAL of GRACE system ×Automatic computation system of multiloop integrals How to deal with loop integrals analytic treatments are required Infrared singularity -> $log(\lambda)$, $1/\varepsilon$ two-loop and higher calculations ×We would like to treat loop integrals in a fully numerical way!! WS07 DESY

Overview of Numerical approach

• Early works on two loop cal.

- 1988-92 J.Fujimoto et.al,
- 1991 D.Kreimer et.al,
- Sector Decomposition
 - 2000 T.Binoth et.al,
- Bernsterin-Tkachov algorithm
 - 2001 G.Passarino et.al,
- Hypergeometric function
 - 2005 Y.Kurihara et.al,
 - And More and More!!

Numerical Extrapolation Method Collaboration with E. de Doncker (WMU)

Put *iɛ* in the denominator of Feynman integrals
to prevent the integral from diverging

$$I = \int \frac{d^4 l}{(2\pi)^4 i} \frac{1}{(l^2 - m_1^2 + i\varepsilon)((l + p_1)^2 - m_2^2 + i\varepsilon)\cdots((l + \sum_{j=1}^{n-1} p_j)^2 - m_n^2 + i\varepsilon)}$$

• Numerical extrapolation into $\varepsilon \rightarrow 0$ - Adapt the epsilon-algorithm to an asymptotic expansion of $I(\varepsilon_i)$ introduced by Wynn

One-loop IR vertex

- HMLIB with P-precision
 - based on IEEE754 FP
 - 1bit :sign,15bit:exponent
 - 32*P-16:Mantissa
- P=4 ⇔ Mantissa=112bit
 - Quadruple-precision is not enough
 - → Octuple-precision!!

n	Av. Lost bit	Max. Lost bit
-20	88	92
-21	98	102
-22	108	112

Numerical vs. Analytical

Real Part of the One-loop IR vertex

 $\lambda = 10^{n}$ photon mass, P- precision

n	Numerical Results		Analytic Results	Р
-30	-0.1508992869807D-01	8	-0.1508992869804D-01	4
-80	-0.405390396284D-01	16	-0.4053903962834D-01	4
150	±0.580D-15 -0.761677949309D-01	22	-0.761677949307D-01	
-150	±0.931D-15	52		4
-160	-0.81257617D-01 ±0.548D-10	32	-0.81257618D-01	4

LCWS07 DESY

Numerical vs. Analytical

Imag. Part of the One-loop IR vertex

 $\lambda = 10^{n}$ photon mass, P- precision

n	Numerical Results		Analytic Results	Р
-30	-0.1892298396158D-02 ±0.124D-25	8	-0.1892298396155D-02	4
-80	-0.47858121612D-02 ±0.401D-12	16	-0.47858121611D-02	4
-150	-0.88367314318D-02 ±0.260D-13	32	-0.88367314320D-02	4
-160	-0.94154341D-01 ±0.109D-11	32	-0.94154343D-01	4

One-loop IR box

Real Part $\lambda = 10^{n}$ photon mass, P- precision

	n	Numerical Results		Analytic Results	Р
	-15	-0.192786110D-06 ±0.314D-14	4	-0.192786112D-06	4
	-20	-0.2472486348D-06 ±0.586D-15	4	-0.247248635D-06	4
5.1 days with	-25	-0.30171112D-06 ±0.111D-13	4	-0.30171115D-06	4
Opteron 2.2GHz	-30	-0.35810D-06 ±0.440D-9	4	-0.35617D-06	4

 $m_e = 0.5 \times 10^{-3} GeV, \ m_f = 150 GeV, \ \sqrt{s} = 500 GeV, \ t = -150^2 GeV^2$

12

Sector Decomposition Method Ueda et.al.

WS07 DESY

- form code to perform the Sector Decomposition automatically
- Ex. IR box
 - Dim regularization (D=4+2 ϵ)
 - Adapt extrapolation method to the numerical integrations

Numerical vs. Analytical

$$I_{4} = \int_{i=1}^{4} dx_{i} \frac{\delta(1 - \sum x_{i})}{(-sx_{1}x_{3} - tx_{2}x_{4} - m_{3}^{2}x_{3}x_{4} - m_{4}^{4}x_{1}x_{4})^{2-\varepsilon}}$$
$$= \sum_{n=-2,-1,0,\dots} C_{n} \times \varepsilon^{n}$$

Real part of C_n with double-precision

n	Numerical Results	Analytic Results(*)
-2	-0.40650406505E-04	-0.40650406504E-04
-1	-0.34156307031E-03	-0.34156306995E-03
0	-0.14929502492E-02	-0.14929502456E-02

 $s = 123, t = -200, m_3^2 = 50, m_4^2 = 60$ (*)Kurihara, Duplancic et.al

LCWS07 DESY

Summary

- GRACE projects
 - GRACE/FORM check for $2 \rightarrow 2$, 3 in 1-loop
 - GRACE/SUSY $1 \rightarrow 3 2 \rightarrow 2$ in 1-loop
 - LHC/QCD new collaboration with LAPP group
- New attempt
 - Numerical Integration
 - extrapolation method with epsilon-algorithm
 - sector decomposition
 - Super High precision control with HMLIB
 - Octuple and higher precision

LCWS07 DESY