# Higgs production by Gluon initiated Weak Boson Fusion 

Marcus Weber<br>SUNY at Buffalo<br>in collaboration with<br>Robert Harlander

## Higgs discovery at LHC


$\rightarrow$ precise predictions for WBF necessary

## Weak Boson Fusion: $\mathrm{qq}^{\prime} \rightarrow \mathrm{qq}^{\prime} \mathrm{H}$



- important Higgs discovery mode at LHC
- allows measurement of $H V V$ couplings



## WBF characteristics

- t-channel $W / Z$ exchange
$\rightarrow 2$ jets at high rapidities
- no color exchange no central hadronic activity
- $H$ decay products at low rapidities
leading order cross section at LHC


QCD background

- much jet activity in central detector region
$\rightarrow$ suppression of WBF background possible


## Weak Boson Fusion at NLO

QCD corrections

- total rates [Han, Valencia, Willenbrock '92] [Djouadi, Spira '00]
- distributions [Figy, Oleari, Zeppenfeld '03] [Barger, Campbell '04]

real corrections

- no color exchange
$\rightarrow$ only corrections to structure functions
$\rightarrow$ read radiation in forward/backward region
$\Rightarrow$ distinctive kinematics not changed at NLO
- size: $+5 \ldots 10 \%$
- scale uncertainty $\sim 2 \%$
virtual 2-loop

vertex corrections
real radiation

$\rightarrow$ no color exchange
$(1 \text {-loop) })^{2}$

$\rightarrow$ color exchange
gluon induced processes $g g \rightarrow q \bar{q} H$
leading order, loop induced
finite, gauge invariant
$\rightarrow$ this talk
consider: $g g \rightarrow q \bar{q} H$ and crossed processes $(q \bar{q} \rightarrow g g H$ and $q g \rightarrow q g H)$
sample diagrams for $g g \rightarrow q \bar{q} H$

non-resonant

resonant $Z$
external quarks: sum over 5 light flavours, taken as massless
diagrams with resonant $Z$ boson
- resonant and nonresonant diagram sets separately gauge invariant
- resonant diagrams: $g g \rightarrow H Z^{*} \rightarrow H q \bar{q}$
$\rightarrow$ NNLO corrections to Higgsstrahlung
suppressed by WBF cuts on invariant jet-jet mass
$\rightarrow$ exclude, use only non-resonant diagrams
initial state radiation diagrams amplitude diverges for soft or collinear final state quarks
$\rightarrow$ real corrections to $\bar{q} g \rightarrow \bar{q} H$
require 2 non-collinear well separated hard jets using cuts $\rightarrow$ finite cross section


## Calculation

- 't Hooft-Feynman gauge
- generation by FeynArts
- evaluation using Mathematica / FormCalc
$\rightarrow$ standard matrix elements and coefficients containing tensor loop integrals
$\rightarrow$ translation to $\mathrm{C}++$ code for numerical evaluation
- tensor loop integrals

3/4 point integrals: Passarino-Veltman reduction
5 point integrals:
numerical instabilities from inverse Gram determinants in tensor reduction
$\rightarrow$ alternative reduction avoiding leading inverse Gram determinants
[Denner, Dittmaier '02]
already used in: $e^{+} e^{-} \rightarrow \nu \bar{\nu} H, e^{+} e^{-} \rightarrow t \bar{t} H, e^{+} e^{-} \rightarrow 4 f$,

$$
H \rightarrow 4 f, p p \rightarrow t \bar{t} j
$$

using loop integral library by A. Denner

- phase space integration: VEGAS distributions possible


## Checks and Cuts

checks of the calculation

- finiteness
no UV,IR, collinear divergences in full amplitude
- gauge invariance
matrix element: $\mathcal{M}=\epsilon_{\mu}\left(k_{1}\right) \epsilon_{\nu}\left(k_{2}\right) \mathcal{M}^{\mu \nu}$
gauge invariance requires:

$$
k_{1 \mu} \epsilon_{\nu}\left(k_{2}\right) \mathcal{M}^{\mu \nu}=\epsilon_{\mu}\left(k_{1}\right) k_{2 \nu} \mathcal{M}^{\mu \nu}=0
$$

$\rightarrow$ checked numerically
phase space cuts
minimal cuts

$$
\begin{gathered}
p_{T j}>20 \mathrm{GeV}, \quad\left|\eta_{j}\right|<5, \quad R>0.6 \\
R=\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}
\end{gathered}
$$

$\rightarrow 2$ well separated hard jets
additional WBF cuts

$$
\begin{gathered}
|\Delta \eta|>4.2, \quad \eta_{1} \cdot \eta_{2}<0 \\
m_{j j}>600 \mathrm{GeV}
\end{gathered}
$$

$\rightarrow$ separation of WBF process from background
parton densities: MRST nnlo

$$
g g \rightarrow q \bar{q} H
$$




WBF LO: $\sigma \approx 1 \mathrm{pb}$ with wbf cuts

- $W$ threshold in loops visible
- WBF cuts: strong suppression


## Results for LHC: distributions

$$
m_{\mathrm{H}}=120 \mathrm{GeV}, \text { minimal cuts }
$$



$$
\frac{d \sigma}{d m_{j j}}\left[\frac{\mathrm{fb}}{\mathrm{GeV}}\right] \quad g g \rightarrow q \bar{q} \mathrm{H}
$$



- rapdity gap: smaller than for weak boson fusion (peak at $\Delta \eta \approx 4 . .5$ )
- dijet invariant mass: rapid falloff
- weak boson fusion important Higgs production channel at LHC
- no color exchange at LO and NLO color exchange contributions only at NNLO
- $g g \rightarrow q \bar{q} H$ and crossed processes
finite, gauge invariant subset of NNLO corrections with color exchange
- $\sigma \sim 5 \mathrm{fb}$ for 100 GeV Higgs with minimal cuts strong suppression by additional WBF cuts

