Higgs production by Gluon initiated Weak Boson Fusion

Marcus Weber SUNY at Buffalo

in collaboration with Robert Harlander

Introduction

Higgs discovery at LHC

 \rightarrow precise predictions for WBF necessary

Weak Boson Fusion: $qq^\prime \to qq^\prime H$

- important Higgs discovery mode at LHC
- allows measurement of HVV couplings

WBF characteristics

- \bullet t-channel W/Z exchange
 - ${\rightarrow}2$ jets at high rapidities
- no color exchange no central hadronic activity
- $\bullet~H$ decay products at low rapidities

QCD background

- much jet activity in central detector region
- \rightarrow suppression of WBF background possible

leading order cross section at LHC

QCD corrections

- total rates [Han, Valencia, Willenbrock '92] [Djouadi, Spira '00]
- distributions [Figy, Oleari, Zeppenfeld '03] [Barger, Campbell '04]

- no color exchange
 - \rightarrow only corrections to structure functions
 - \rightarrow read radiation in forward/backward region
- \Rightarrow distinctive kinematics not changed at NLO
 - size: +5...10%
 - \bullet scale uncertainty $\sim 2\%$

Weak Boson Fusion at NNLO

 \rightarrow color exchange

gluon induced processes $gg \rightarrow q\bar{q}H$

leading order, loop induced finite, gauge invariant

 \rightarrow this talk

$gg \to q\bar{q}H$

consider: $gg \rightarrow q\bar{q}H$ and crossed processes $(q\bar{q} \rightarrow ggH$ and $qg \rightarrow qgH)$

sample diagrams for $gg \to q \bar{q} H$

external quarks: sum over 5 light flavours, taken as massless

diagrams with resonant ${\boldsymbol Z}$ boson

- resonant and nonresonant diagram sets separately gauge invariant
- resonant diagrams: $gg \to HZ^* \to Hq\bar{q}$
 - \rightarrow NNLO corrections to Higgsstrahlung

suppressed by WBF cuts on invariant jet-jet mass

 \rightarrow exclude, use only non-resonant diagrams

initial state radiation diagrams

amplitude diverges for soft or collinear final state quarks

 \rightarrow real corrections to $\bar{q}g \rightarrow \bar{q}H$

require 2 non-collinear well separated hard jets using cuts \rightarrow finite cross section

- 't Hooft-Feynman gauge
- generation by FeynArts
- \bullet evaluation using Mathematica / FormCalc
 - \rightarrow standard matrix elements and coefficients containing tensor loop integrals
 - \rightarrow translation to C++ code for numerical evaluation
- tensor loop integrals
 - 3/4 point integrals: Passarino-Veltman reduction
 - 5 point integrals:

numerical instabilities from inverse Gram determinants in tensor reduction \rightarrow alternative reduction avoiding leading inverse Gram determinants [Denner, Dittmaier '02] already used in: $e^+e^- \rightarrow \nu \bar{\nu} H$, $e^+e^- \rightarrow t\bar{t}H$, $e^+e^- \rightarrow 4f$, $H \rightarrow 4f$, $pp \rightarrow t\bar{t}j$ using loop integral library by A. Denner

• phase space integration: VEGAS distributions possible

checks of the calculation

• finiteness

no UV,IR,collinear divergences in full amplitude

• gauge invariance

matrix element: $\mathcal{M} = \epsilon_{\mu}(k_1)\epsilon_{\nu}(k_2)\mathcal{M}^{\mu\nu}$ gauge invariance requires:

$$k_{1\mu}\epsilon_{\nu}(k_2)\mathcal{M}^{\mu\nu} = \epsilon_{\mu}(k_1)k_{2\nu}\mathcal{M}^{\mu\nu} = 0$$

 \rightarrow checked numerically

phase space cuts minimal cuts

$$p_{Tj} > 20 \text{ GeV}, \quad |\eta_j| < 5, \quad R > 0.6$$

 $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

 \rightarrow 2 well separated hard jets additional WBF cuts

$$ert \Delta \eta ert > 4.2, \quad \eta_1 \cdot \eta_2 < 0$$

 $m_{jj} > 600 \, \mathrm{GeV}$

 \rightarrow separation of WBF process from background

WBF LO: $\sigma \approx {\rm 1\,pb}$ with wbf cuts

- $\bullet \ W$ threshold in loops visible
- WBF cuts: strong suppression

 $m_{\rm H} = 120 \, {\rm GeV}$, minimal cuts

• rapdity gap: smaller than for weak boson fusion (peak at $\Delta \eta \approx 4..5$)

• dijet invariant mass: rapid falloff

Conclusions

- weak boson fusion important Higgs production channel at LHC
- no color exchange at LO and NLO color exchange contributions only at NNLO
- $gg \rightarrow q\bar{q}H$ and crossed processes finite, gauge invariant subset of NNLO corrections with color exchange
- $\sigma \sim 5 \, {\rm fb}$ for 100 GeV Higgs with minimal cuts strong suppression by additional WBF cuts