A preliminary analysis of the CALICE test beam data

Dhiman Chakraborty, NIU for the CALICE Collaboration

LCWS07, Hamburg, Germany May 29 - June 3, 2007

Talk outline

- Test beam apparatus
- Data analysis
 - Overview
 - Hit selection, background rejection
 - Correlations among and combination of ECal, HCal, & TCMT energies.
- Results
 - Linearity
 - Energy resolution
- Summary

LCWS07, Hamburg Mav 29 - June 3, 2007

Layout of beam test area during 10/06 run

LCWS07, Hamburg Mav 29 - June 3, 2007

Structure 1.4

The CALICE ECal prototype

CALICE ECAL Prototype

Czech Rep., France, Korea, UK

Design: 30 Si-W layers x 9 wafers x 6x6 1cm x 1cm cells. Three modules, each with different W thicknesses:

layers 1-10 - 1.4mm layers 11-20 - 2.8mm layers 21-30 - 4.2mm

Oct/2006 run: all 30 layers are partially instrumented (6 out of 9 wafers / layer). Total of $30 \ge 6 \ge 6480$ channels.

Wafers Si with 6×6 pads (10×10 mm²)

LCWS07, Hamburg May 29 - June 3, 2007

The CALICE HCal prototypeTCMTHCAL

Czech Rep., France, Germany, Russia, UK, USA

Design: 38 scintillator-steel layers, with SiPM readout. Layering: 0.5cm active / 2.0cm steel. Three granularity regions per layer: 3x3, 6x6 and 12x12 cm²

Oct/2006 run: 23/38 layers in place: Layers 1-17 – all instrumented Layers 19-29 – every other layer instrumented

23 layers x 216 channels / layer = 4968 channels

LCWS07, Hamburg May 29 - June 3, 2007

HCal and TCMT segmentation

LCWS07, Hamburg May 29 - June 3, 2007

The CALICE TCMT prototype

Designed and built at NICADD/NIU, in partnership with DESY, and with engineering help from Fermilab.

Design: 16 Scint-steel layers with alternate x,y orientations, with SiPM-readout scintillator strips. Each strip is 100 x 5 x 0.5 cm³ Layers 1-8: ~2cm absorber Layers 9-16: ~10cm absorber 16 layers x 20 strips = 320 channels

Oct/2006 run: All 16 layers fully instrumented, according to design.

HCAL TCMT

LCWS07, Hamburg May 29 - June 3, 2007

Example pion event display

Late shower in HCAL

TCMT clearly needed to contain shower

Slide from K.Francis' talk

Analysis overview

- Data collected with pion beams at 6-80 GeV. This analysis focuses on 10-20 GeV.
- Official CALICE software packages and conditions database used for pedestal subtraction, calibration, and zero-suppression.
- Processing of ECal hits is done by a single processor.
- Processing of AHCal hits is modularized into several processors.
- TCMT hit processing is modelled after AHCal.
 - Pedestal is stable within 1%, MIP within 1.5%.
- Difference at low end of AHCal response between MC and data is thought be due to inadequate modeling of photosensor noise and cross-talk.
- Hit selection requirement: Ehit > 0.5 Emip .and. Ehit > 2 $\sigma_{pedestal}$

LCWS07, Hamburg Mav 29 - June 3, 2007

Pedestal stability in the TCMT

Run300927 Layer 1 Percent Change, Interspill to Interspill

Run300927 RMS Change for Each Layer, Interspill to Interspill

RMS Change for Each Layer, Run to Run

MIP calibration and response stability of the TCM

LCWS07, Hamburg May 29 - June 3, 2007

Combination of ECal, HCal, & TCMT energies

- Analog as well as semi-digital (2-bit weighted hit counting) measurements tried.
- 7 regions defined, each with its own sampling weight = the subdetector's inter-component factor times intra-component thickness.

Region	Rel. thickness	I	CF	Relative sampling weight		
2		Analog	Digital	Analog	Digital	
ECAL 1	1	0.153	0.292	0.153	0.292	
ECAL 2	2	0.153	0.292	0.306	0.584	
ECAL 3	3	0.153	0.292	0.459	0.876	
AHCAL 1	1	1.000	1.000	1.000	1.000	
AHCAL 2	2	1.000	1.000	2.000	2.000	
TCMT 1	1	0.909	0.257	0.909	0.257	
TCMT 2	4.92	0.909	0.257	4.472	1.264	

LCWS07, Hamburg Mav 29 - June 3, 2007

May 29 - June 3, 2007

Adding TCMT to ECal & HCal : analog approache

May 29 - June 3, 2007

Semi-digital approach (D): weighted (2-bit) hit-counting in ECal, HCal, and TCMT

• Four energy bins used, each with its own weight:

Weight
0
1
4
8

- Same for all 3 detectors.
- The thresholds and weights have not been fine-tuned. Optimal combinations are quite possibly multiple and/or broad.

LCWS07, Hamburg Mav 29 - June 3, 2007

Semi-digital approach (D) 20 GeV pions

May 29 - June 3, 2007

Comparison between data (L) and MC (R)

MC = Mokka v06-03-p01, with LHEP physics list & TBCern1006_01 eometry

May 29 - June 3, 2007

CQ

20 GeV pions

Reconstruction at different energies

and comparison with MC

Calorimeter for

10, 15, 20 GeV pions

May 29 - June 3, 2007

Linearity and energy resolution ratios (preliminary) for LO

- Chisquare-based method for finding sampling factors.
- Only 23 out of 38 HCal layers were instrumented.

	Scheme	Analog	Semi-digital	Analog	Semi-digital	Analog	Semi-digital
Linearity: E _{reco} /E _{beam}	Data MC	1.004 0.972	1.05 1.04	1.003	1.03	1.0 1.0	1.0 1.0
Resolution: _E /E	Data MC	0.19 0.19	0.16 0.16	0.16	0.13	0.14 0.15	0.12 0.11

• Semi-digital measurement has better resolution.

LCWS07, Hamburg Mav 29 - June 3, 2007

- Preliminary results are most promising.
 - Excellent agreement in the limited comparisons with MC done so far.
 - Still more data to come (Jul/Aug '07 @ CERN, late 2007 @ MTBF/FNAL).
- SiPM readout for high-granularity scintillator -based hadron calorimetry is successful.
- TCMT clearly improves energy resolution.
- Semi-digital calorimetry gives better resolution for single hadrons around 10-20 GeV.
- More detailed analysis, incl. shower shape and better weight-tuning coming soon.
 - The prototype's high granularity allows a detailed study of shower shapes: validation of hadronic shower simulation models.
- evaluation (and developments) of clustering and particle flow algorithms in future, high-granularity calorimeters.
 LCWS07, Hamburg CALICE TB analysis D. Chakraborty, NIU 21
 May 29 June 3, 2007

Back-up slides

LCWS07, Hamburg May 29 - June 3, 2007

Layout of beam test area during 08/06 run

LCWS07, Hamburg Mav 29 - June 3, 2007

Layout of beam test area during 10/06 run

LCWS07, Hamburg Mav 29 - June 3, 2007

Calibration of a TCMT strip

Energy threshold (mips)

AHCAL response: data-MC comparison

LCWS07, Hamburg Mav 29 - June 3, 2007