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Motivation
Although evidence for Dark Matter has been accumulating over the years, still do 
not have evidence what this dark matter could be

Natural link DM  ~100GeV range and EWSB: new physics at weak scale can 
also solve both EWSB and DM

Weakly interacting particles gives roughly the right amount of DM, Ωh2 ~0.1

Supersymmetric models with R-parity have good candidate (neutralino LSP) butSupersymmetric models with R parity have good candidate (neutralino LSP) but 
many other possibilities exist only need some symmetry to ensure that lightest 
particle is stable
• UED, Little Higgs, Warped Xtra-Dim …
• Superweakly interacting particles might also work (gravitino)

Examine different candidates and study prospects for direct/indirect detection, 
collider searches



Dirac right-handed neutrino
Typical framework: sterile Dirac neutrino under SM but charged under 
SU(2)R

Phenomenologically viable model with warped extra-dimensions and right-
handed neutrino (GeV-TeV) as Dark Matter was proposed (LZP)
• A h S 93 23180 (2004) li i l l• Agashe, Servant, PRL93, 231805   (2004) – see explicit example later

Models with LR symmetry and UED  also can have RH neutrino dark matter
• Hsieh, Mohapatra, Nasri, PRD74,066004 (2006). 

Stability requires additional symmetry , but symmetry might be necessary forStability requires additional symmetry , but symmetry might be necessary for 
EW precision or for stability of proton

Explore more generic model  with stable νR 1GeV– few TeV and examine 
i f hi i i LZP d lproperties of this neutrino  ---- reexamine LZP model



Annihilation

First assume only SM+ νR

νR can couple to Z through 

ν’L- νR mixingL R g

Main annihilation channel –a a a o c a e
Z exchange
• Ff, WW, Zh

Also Higgs exchange



Direct detection - limits
Detect dark matter through 
interaction with nuclei in large 
detector

Many experiments underway andMany experiments underway and 
planned

In 2007 – new results announced 
from Xenon (Gran-Sasso) best 
limit ~factor 6 better than CDMSlimit factor 6 better than CDMS 
(Ge,Si)

E. Aprile, Talk @ APS 2007



Direct detection : Dirac neutrino

Dirac neutrino: spin independent interaction dominated 
by Z exchange (vector like coupling) very large cross

ν ν

by Z exchange (vector-like coupling) very large cross-
section for direct detection 
• coupling ZνRνR cannot be too large
• l t i t f LEP i i ibl d f Z

Z,h

• also constraint from LEP : invisible decay of Z

Z exchange: also main mechanism for annihilation of νRg R• ZνRνR coupling cannot be too small 

Vectorial coupling : elastic scattering on proton <<Vectorial coupling : elastic scattering on proton << 
neutron
• σ νp = (1- 4 sin2 θW) σ νn• For Majorana (neutralino) σ ~ σFor Majorana (neutralino) σ νp  σ νn



Relic density vs elasticRelic density vs  elastic 
scattering

gz=g/x

WMAP

Higgs exchange contribute for 
annihilation (near resonance) and 
for direct detection << Zfor direct detection,  << Z 
exchange, only relevant for weak 
coupling to the Z

Uncertainties in DD limit – e.g 
velocity distribution of DM (up to 
f t 3)factor 3)



Direct detection limits -WMAP

Current DM experiments p
already restricts νR to be 
• ~MZ/2, 
• ~MH/2 

• M(νR) > 700GeV
WMAP

Other mechanism for not so 
heavy neutrino DM?

WMAP

y

Relic density computed with micrOMEGAs_2.0, 



Extending the gauge group (LR)
New Z’ (… and W’)- SU2LXSU2RXU1
Could introduce τ’ partner ν’ +new quarks
Constraints on Z’ from EW precision: mixing 
small ~10-3 (T parameter)
Assume Z’ couples only to third generationAssume Z   couples only to third generation 
fermions : weakens EW constraints but 
induces FCNC – constraints  also depend on 
quark mixing matricesq g
• Mz’~ 500GeV 

Coupling of νR to Z can also be induced by Z-
Z’ mixingZ  mixing
Heavy Z’ that couples to 3rd gen.: no effect on 
DD
Eff f W’ i ihil i iEffect of W’ in annihilation not so important



Relic density vs elastic scattering’ 
As before viable neutrino DM 
around M /2 M /2around MZ/2, MH/2

Depending on MZ’ can have 
neutrino ~ 200GeVneutrino ~ 200GeV

Not considered coannihilationNot considered coannihilation
• Need to specify properties of 

extra fermions



The LZP model
Warped Xtra-Dim (Randall-Sundrum)
GUT model with matter in the bulk
Solving B violation in GUT models stable KK particle 
Example based on SO(10) with Z3 symmetry: LZP is KK 
RH-neutrinoRH-neutrino

• Agashe, Servant, hep-ph/0403143
Many features of our generic model:
• LR symmetry with KK W’,Z’ gauge bosons
• Many new generations of KK fermions, most are multi-TeV, lighter ones 

are those of third generation (choice of BC for heavy top quark)
• ZνRνR coupling induced via Z-Z’ mixing or νR-ν’L mixing
• Z’ νRνR coupling ~1, Z’ couples to 3rd generation fermions
• H νRνR coupling small



…  LZP model 
Free parameters : masses of KK fermions, mass of KK gauge 
boson, MH, coupling of Z’(g)

Couplings to KK particles from wave functions overlap

LZP is Dirac particle, coupling to Z through Z-Z’ mixing and 
mixing with new LH neutrino
ZνRνRcannot be too large otherwise elastic scattering 
on nucleon too large
• Z Z’ i i 1/M2 Z t l if M ’<3 4T V• Z-Z’ mixing ~1/M2

Z’  - gZ too large if Mz’<3-4TeV



Relic density of LZP
Qualitatively recover results of first study 
(Agashe, Servant), new features
• Precise evaluation of relic density in 

micromegas_2.0
• Include Higgs exchangeInclude Higgs exchange
• Include all coannihilations

Compatibility with WMAP for LZP ~ 
50GeV and 0.5- 2TeV depending on MKK

Large cross sections for direct detectionLarge cross-sections for direct detection
• Signal for next generation of detectors in 

large area of parameter space (10-9pb) 



Coannihilation
Possibility to have LZP in 
range 100-500GeV withrange 100 500GeV with 
coannihilation
Coannihilation decreases 
Ωh2 but no effect on direct 
detection rate

Need small mass 
differences (NLZP-LZP) ( )
~few %  



Signals - Colliders
Higgs decay into invisible --
• LHC: weak boson fusion+ZH 
• ILC 

Z invisible : LEP constraint OK LHC@100fb-1

As in MSSM : search for new particles 

L li d ’ if ’ l d i hLong-lived τ’ : if τ’ nearly degenerate with 
ν’: can decay outside detector
• signal : charged massive particle  (only for 

ll i f t ) hsmall region of parameter space) – searches 
at Tevatron , LHC + ILC

• More likely τ pair production and signal 
2l+missing energy2l+missing energy



Signals - Colliders
Only one study of LHC potential: 
signal for KK quarks in LZP model 

b has no Z charge– bR has no Z3 charge
• Pair produced via gg
• Decay into tW
• 4W+bb final state4W+bb final state

Z’ search but  only couples to 
W bosons and 3rd generationW bosons and 3rd generation  --
difficult
Identify model, determination of 
parameters still need to be

Signal 3W in jets 1W leptonic
Dij t di t ib tiparameters …   still need to be 

studied, will involve DM detection
•Dennis et al. hep-ph/0701158

Dijet mass distribution



Signals – indirect detection
In LZP model 
• Hooper, Servant, hep-ph/0502247p p p

Good prospects for detecting HE neutrinos from the sun –
M <100GeV ν’ pairs annihilate directly into ν pairs :M ν’ <100GeV, ν  pairs annihilate directly into ν pairs : 
accessible to AMANDA (max 5-10 events/yr) and Antares

Also good signal in positron –Pamela

LZP ihil ti l ti t i ht iLZP annihilation near galactic center might give gamma rays 
signal 



Comparisons of DM scenarios



Summary
Dirac RH neutrino is viable DM candidate
Mass range 40GeV few TeVMass range 40GeV-few TeV
Need resonance annihilation and/or coannihilation 
for M<700GeVfor M<700GeV

Distinctive feature: expect large signal in directDistinctive feature: expect large signal in direct 
detection 
Need to further study collider potential forNeed to further study collider potential for 
detecting new particles


