Dirac neutrino dark matter

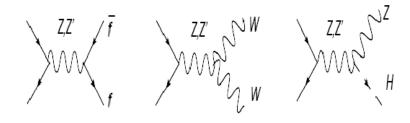
G. Bélanger LAPTH- Annecy

based on G. B, A.Pukhov, G. Servant CERN-PH-TH/2007-083

Outline

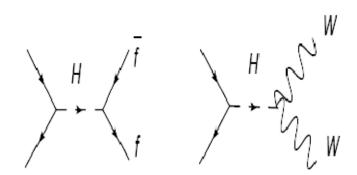
- Motivation
- Direct detection
- Relic density
- An explicit example : the LZP model
- Signals and conclusion

Motivation

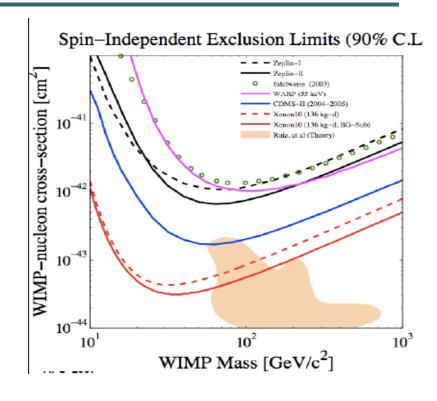

- Although evidence for Dark Matter has been accumulating over the years, still do not have evidence what this dark matter could be
- Natural link DM ~100GeV range and EWSB: new physics at weak scale can also solve both EWSB and DM
- Weakly interacting particles gives roughly the right amount of DM, $\Omega h^2 \sim 0.1$
- Supersymmetric models with R-parity have good candidate (neutralino LSP) but many other possibilities exist only need some symmetry to ensure that lightest particle is stable
 - UED, Little Higgs, Warped Xtra-Dim ...
 - Superweakly interacting particles might also work (gravitino)
- Examine different candidates and study prospects for direct/indirect detection, collider searches

Dirac right-handed neutrino

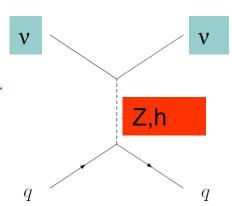
- Typical framework: sterile Dirac neutrino under SM but charged under $SU(2)_R$
- Phenomenologically viable model with warped extra-dimensions and right-handed neutrino (GeV-TeV) as Dark Matter was proposed (LZP)
 - Agashe, Servant, PRL93, 231805 (2004) see explicit example later
- Models with LR symmetry and UED also can have RH neutrino dark matter
 - Hsieh, Mohapatra, Nasri, PRD74,066004 (2006).
- Stability requires additional symmetry, but symmetry might be necessary for EW precision or for stability of proton
- Explore more generic model with stable v_R 1GeV– few TeV and examine properties of this neutrino ---- reexamine LZP model


Annihilation

- First assume only SM+ v_R
- v_R can couple to Z through v_L - v_R mixing


- Main annihilation channel –
 Z exchange
 - Ff, WW, Zh

Direct detection - limits

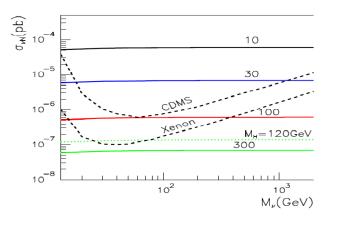

- Detect dark matter through interaction with nuclei in large detector
- Many experiments underway and planned
- In 2007 new results announced from Xenon (Gran-Sasso) best limit ~factor 6 better than CDMS (Ge,Si)

E. Aprile, Talk @ APS 2007

Direct detection: Dirac neutrino

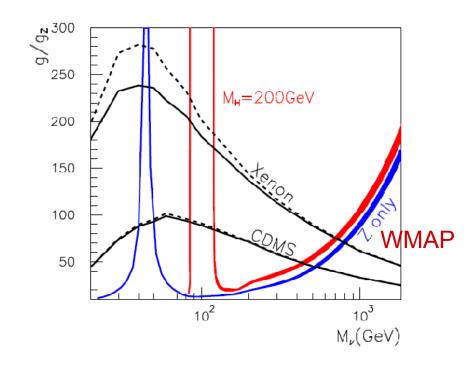
- Dirac neutrino: spin independent interaction dominated by Z exchange (vector-like coupling) → very large cross-section for direct detection
 - coupling Zv_Rv_R cannot be too large
 - also constraint from LEP: invisible decay of Z



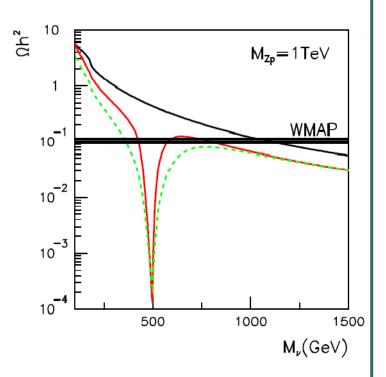

- Z exchange: also main mechanism for annihilation of v_R
 - Zv_Rv_R coupling cannot be too small
- Vectorial coupling : elastic scattering on proton << neutron
 - $\sigma_{vp} = (1 4 \sin^2 \theta_W) \sigma_{vn}$
 - For Majorana (neutralino) $\sigma_{vp} \sim \sigma_{vn}$

Relic density vs elastic scattering

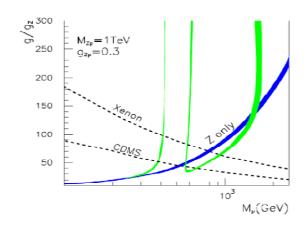
$$g_Z \overline{\nu'} \gamma^\mu \frac{1 \pm \gamma_5}{2} \nu' Z_\mu$$
$$g_H \overline{\nu'} \nu' H$$

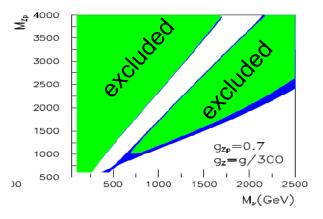

- Higgs exchange contribute for annihilation (near resonance) and for direct detection, << Z exchange, only relevant for weak coupling to the Z
- Uncertainties in DD limit e.g velocity distribution of DM (up to factor 3)

Direct detection limits -WMAP


- Current DM experiments already restricts v_R to be
 - ~M₇/2,
 - ~M_H/2
 - $M(v_R) > 700 GeV$
- Other mechanism for not so heavy neutrino DM?

Relic density computed with micrOMEGAs_2.0,

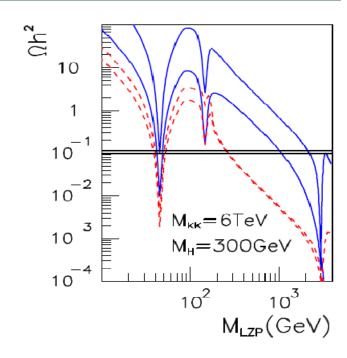

Extending the gauge group (LR)


- New Z' (... and W')- SU_{2L}XSU_{2R}XU₁
- Could introduce τ ' partner ν ' +new quarks
- Constraints on Z' from EW precision: mixing small $\sim 10^{-3}$ (T parameter)
- Assume Z' couples only to third generation fermions: weakens EW constraints but induces FCNC – constraints also depend on quark mixing matrices
 - Mz'~ 500GeV
- Coupling of v_R to Z can also be induced by Z-Z' mixing
- Heavy Z' that couples to 3rd gen.: no effect on DD
 - Effect of W' in annihilation not so important

Relic density vs elastic scattering'

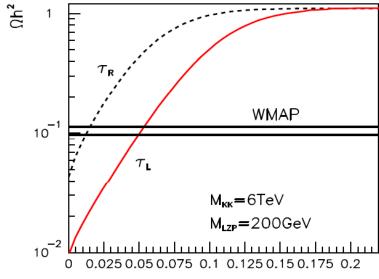
- As before viable neutrino DM around $M_Z/2$, $M_H/2$
- Depending on $M_{Z'}$ can have neutrino $\sim 200 \text{GeV}$
- Not considered coannihilation
 - Need to specify properties of extra fermions

The LZP model


- Warped Xtra-Dim (Randall-Sundrum)
- GUT model with matter in the bulk
- Solving B violation in GUT models → stable KK particle
- Example based on SO(10) with Z_3 symmetry: LZP is KK RH-neutrino
 - Agashe, Servant, hep-ph/0403143
- Many features of our generic model:
 - LR symmetry with KK W',Z' gauge bosons
 - Many new generations of KK fermions, most are multi-TeV, lighter ones are those of third generation (choice of BC for heavy top quark)
 - $^{\bullet}$ Zv_Rv_R coupling induced via Z-Z' mixing or $v_{R}v_L$ mixing
 - $Z' V_R V_R$ coupling ~1, Z' couples to 3^{rd} generation fermions
 - $H V_R V_R$ coupling small

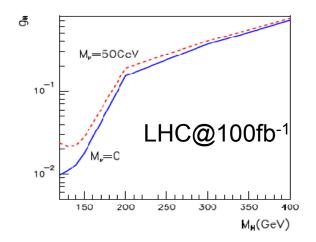
... LZP model

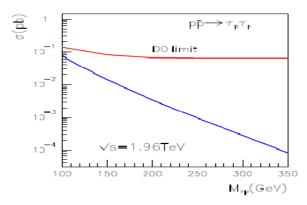
- Free parameters : masses of KK fermions, mass of KK gauge boson, M_H, coupling of Z'(g)
- Couplings to KK particles from wave functions overlap
- LZP is Dirac particle, coupling to Z through Z-Z' mixing and mixing with new LH neutrino
- Zv_Rv_R cannot be too large otherwise elastic scattering on nucleon too large
 - Z-Z' mixing $\sim 1/M^2_{Z'}$ gZ too large if Mz'<3-4TeV


Relic density of LZP

- Qualitatively recover results of first study (Agashe, Servant), new features
 - Precise evaluation of relic density in micromegas 2.0
 - Include Higgs exchange
 - Include all coannihilations
- Compatibility with WMAP for LZP \sim 50GeV and 0.5- 2TeV depending on M_{KK}
- Large cross-sections for direct detection
 - Signal for next generation of detectors in large area of parameter space (10⁻⁹pb)

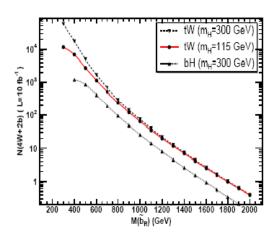
Coannihilation


- Possibility to have LZP in range 100-500GeV with coannihilation
- Coannihilation decreases
 Ωh² but no effect on direct detection rate
- Need small mass differences (NLZP-LZP) ~few %



Δ

Signals - Colliders


- Higgs decay into invisible ---
 - LHC: weak boson fusion+ZH
 - ILC
- Z invisible : LEP constraint OK
- As in MSSM: search for new particles
- Long-lived τ ': if τ ' nearly degenerate with v': can decay outside detector
 - signal: charged massive particle (only for small region of parameter space) – searches at Tevatron, LHC + ILC
 - More likely τ pair production and signal 21+missing energy

Signals - Colliders

- Only one study of LHC potential:
 signal for KK quarks in LZP model
 b_R has no Z₃ charge
 - Pair produced via gg
 - Decay into tW
 - 4W+bb final state
- Z' search but only couples to W bosons and 3rd generation -difficult
- Identify model, determination of parameters ... still need to be studied, will involve DM detection

Signal 3W in jets 1W leptonic Dijet mass distribution

Dennis et al. hep-ph/0701158

Signals - indirect detection

- In LZP model
 - Hooper, Servant, hep-ph/0502247
- Good prospects for detecting HE neutrinos from the sun $M_{v'}$ <100GeV, v' pairs annihilate directly into v pairs : accessible to AMANDA (max 5-10 events/yr) and Antares
- Also good signal in positron –Pamela
- LZP annihilation near galactic center might give gamma rays signal

Comparisons of DM scenarios

Scenario		SUSY1	SUSY2	SUSY3	LZP	LTP
		bino	higgsino	gravitino	ν_R	heavy photon
LHC	Discovery	***	*	**	*	**
	precision	*	No	?	?	?
ILC	Discovery	***	**	**	*	**
	precision	***	*	?	?	?
Direct		*	***	No	***	No
Indirect	γ or ν	*	***	No	**	***

Summary

- Dirac RH neutrino is viable DM candidate
- Mass range 40GeV-few TeV
- Need resonance annihilation and/or coannihilation for M<700GeV
- Distinctive feature: expect large signal in direct detection
- Need to further study collider potential for detecting new particles