Modelindependent WIMP Searches at the ILC

Christoph Bartels, Jenny List

DESY

LCWS 2007

Introduction Software And Reconstruction Tools Energy Resolution Studies Preliminary Analysis Results Summary And Outlook

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

Model-independent WIMP searches

study:

- sensitivity
- mass resolution
- benefits of beam polarisation

... with full detector simulation! using:

- ► WIMP pair production with ISR: $e^+e^- \rightarrow \chi \bar{\chi} \gamma$
- main background process: $e^+e^- \rightarrow \nu \bar{\nu} \gamma$

A. Birkedal et al. [hep-ph/0403004]

What does model-independent mean?:

- ▶ No assumptions on the nature of the WIMP interactions
- Dark Matter consists of only one kind of particle
- ▶ WIMP pairs annihilate directly into SM particles $\chi \overline{\chi} \to X_i \overline{X_i}$ $X_i = e, q, \nu, g, ...$ (no $\tilde{\tau} \tilde{\chi}_1^0$ coannihilation)
- Annihilation cross section σ_{an} determined by Ω_{DM}

A. Birkedal et al. [hep-ph/0403004]

Cross-section Derivation

► Annihilation cross section σ_{an} determined by Ω_{DM}

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

A. Birkedal et al. [hep-ph/0403004]

Cross section derivation

- Annihilation cross section σ_{an} determined by Ω_{DM}
- Crossing symmetry: $\sigma_{an} \rightarrow \sigma(e^+e^- \rightarrow \chi \overline{\chi})$

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

A. Birkedal et al. [hep-ph/0403004]

Cross section derivation

- Annihilation cross section σ_{an} determined by Ω_{DM}
- Crossing symmetry: $\sigma_{an} \rightarrow \sigma(e^+e^- \rightarrow \chi \overline{\chi})$
- ▶ Inclusion of ISR: $\sigma(e^+e^- \rightarrow \chi \overline{\chi} \gamma)$

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

A. Birkedal et al. [hep-ph/0403004]

Cross section parameters

- Free:
 - κ_e Fraction of WIMP pair annihilation into e^+e^-
 - ► *M*_{\chi} WIMP mass
 - S_{χ} WIMP spin
 - J Angular momentum of dominant partial wave
- From cosmological observation: σ_{an}

Influence of Beam Polarisation

- Main irreducible background: e⁻e⁺ → νννγ is strongly suppressed for e⁺_Le⁻_R
- ▶ WIMP couplings to electrons may have different behaviour!

Possible cases for WIMP couplings to electrons

- ▶ like SM charged weak interaction $\kappa(e_L^-e_R^+)$
- ▶ parity and helicity conserving $\kappa(e_L^-e_R^+) = \kappa(e_R^-e_L^+)$
- opposite SM charged weak interaction $\kappa(e_R^-e_L^+)$

Expect enhancement of S/B ratio by polarisation!

Event Generation

Background:

▶ NUNUGPV: $e^+e^- \rightarrow \nu \overline{\nu} \gamma(\gamma \gamma)$ (used at LEP2)

- $1.2 \cdot 10^6$ events generated at $\sqrt{s} = 500 \, GeV$
- ► At least one photon with 8 GeV $< E_{\gamma} < 250$ GeV and $15^o < \Theta_{\gamma} < 165^o$ in each event

Signal:

- Reweighting background according to WIMP cross section
- Benefit: only one MC production needed

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

Detector Simulation and Reconstruction

Full GEANT 4 based detector simulation

- Large Detector Concept
 - LDC01Sc
 - 4 Tesla magnetic field
- Mokka 6.1

Reconstruction with MarlinReco

- Particle Flow as implemented in WOLF algorithm
- require:
 - $E_{\gamma} > 10 \text{ GeV}$
 - $20^\circ < \theta_\gamma < 160^\circ$
 - for resolution studies: angular match to generated photon

Photon Energy Spectra

Energy of highest energy photons:

Full reconstruction

- Z⁰-resonance at 240 GeV heavily smeared
- Fewer photons reconstructed at high energies than with cheaters

Cheated reconstruction

Slightly better reconstruction

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

Cluster Splitting

Splitting of large clusters

- Large clusters are split up, and identified as individual photons
- \blacktriangleright \Rightarrow Photon deficit at high energies

Merging of photons

- \blacktriangleright \Rightarrow recombine neighboring photons
- Combined photon spectrum close to cheated photon spectrum

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

Energy Resolution

Averaged over full detector

- Photon energy resolution roughly constant at 6%
- Significantly worse than design goal, has to be investigated!
- Further analysis certainly influenced by this behavior

- single particle gun
- other photon finders (P.Krstonosic, Pandora)

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

Recoil Mass Spectrum

WIMP:

- ▶ P-wave annihilator (J=1)
- $M_{\chi} = 150 \text{ GeV}$

•
$$S_{\chi} = 1$$

$$M_{recoil}^2 = s - 2\sqrt{s}E_{\gamma}$$

WIMP signal kicks in at $M_{recoil} = 316 \text{ GeV}$

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

Sensitivity

Reach for 3σ observation with $\int Ldt = 500 fb^{-1}$

- Method: fractional event counting implemented in ROOT::TLimit
- WIMP spin
 - Case 1: P-wave (J=1), $S_{\chi} = 1$ WIMP
 - Case 2: P-wave (J=1), $S_{\chi} = \frac{1}{2}$ WIMP
- WIMP couplings
 - coupling to e_L^- and e_R^+
 - coupling to e_R^- and e_L^+
 - parity and helicity conserving couplings
- Polarisation
 - unpolarisaed beams
 - e^- polarisation only ($P_{e^-} = 0.8$)
 - additional e^+ polarisation ($P_{e^+} = 0.6$)

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

Case 1: P-wave (J=1), $S_{\chi} = 1$ WIMP

Polarisation:

- full line: unpolarised beams
- dotted line:
 e⁻ only (P_{e⁻} = 0.8)
- dashed line:

additional e^+ ($P_{e^+} = 0.6$)

coupling: P & H conserving

coupling: e_L^- / e_R^+

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

Case 2: P-wave (J=1),
$$S_{\chi} = \frac{1}{2}$$
 WIMP

Polarisation:

- full line: unpolarised beams
- dotted line: e^- only ($P_{e^-} = 0.8$)
- dashed line:

additional e^+ ($P_{e^+} = 0.6$)

coupling: P & H conserving

coupling: e_L^- / e_R^+

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

- χ² test on recoil mass distributions
- $\int Ldt = 200 fb^{-1}$
- again for the three polarisation scenarios

WIMP (Case 1):

- P-wave annihilator (J=1), $S_{\chi} = 1$
- couplings P & H conversing
- ▶ $M_{\chi} = 150 \text{ GeV}$

• $\kappa_e = 0.3$

•
$$P_{e^-} = 0.8, P_{e^+} = 0.6$$
:
 $M_{\chi} = 150.4 \pm 0.7 \text{ GeV}$

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

- χ² test on recoil mass distributions
- $\int Ldt = 200 fb^{-1}$
- again for the three polarisation scenarios

WIMP (Case 1):

- P-wave annihilator (J=1), $S_{\chi} = 1$
- couplings: e_R^- / e_L^+
- ► $M_{\chi} = 150 \text{ GeV}$

Mass resolution

- $P_{e^-} = 0.8, P_{e^+} = 0.0$:
 - $M_\chi = 150.5 \pm 1.0$ GeV

•
$$P_{e^-} = 0.8, P_{e^+} = 0.6$$
:

$$M_\chi = 150.3 \pm 0.6~{
m GeV}$$

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

- χ² test on recoil mass distributions
- $\int Ldt = 200 fb^{-1}$
- again for the three polarisation scenarios

WIMP (Case 2):

- P-wave annihilator (J=1), $S_{\chi} = \frac{1}{2}$
- couplings: P & H conserving
- ▶ $M_{\chi} = 180 \text{ GeV}$

• $\kappa_e = 0.3$

Mass resolution

- $P_{e^-} = 0.8, P_{e^+} = 0.0$:
 - $M_\chi = 181.0 \pm 1.7~{
 m GeV}$

•
$$P_{e^-} = 0.8, P_{e^+} = 0.6$$
:

$$M_\chi = 180.5 \pm 0.9~{
m GeV}$$

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

- χ² test on recoil mass distributions
- $\int Ldt = 200 fb^{-1}$
- again for the three polarisation scenarios

WIMP (Case 2):

- P-wave annihilator (J=1), $S_{\chi} = \frac{1}{2}$
- couplings: e_R^- / e_L^+
- ▶ $M_{\chi} = 180 \text{ GeV}$

- $P_{e^-} = 0.8, P_{e^+} = 0.0$:
 - $M_\chi = 180.7 \pm 1.3~{
 m GeV}$

•
$$P_{e^-} = 0.8, P_{e^+} = 0.6$$
:

$$\textit{M}_{\chi} = 180.5 \pm 0.6 ~\rm{GeV}$$

Benefits Of Beam Polarisation

Benefits

- ▶ 80% Polarisation of the e⁻ beam increases the sensitivity by a factor of 2 to 3
- Additionally 60% e⁺ polarisation gives another increase in sensitivity by a factor of 2 as well as in the mass resolution (compared to e⁻ polarisation)

Summary

- Analyses in full simulation are possible already
- Reconstruction needs users
- Detector optimisation is ongoing
- Good chance of model-independent WIMP detection at the ILC
- Beam polarisation enhances significantly the reach as well as the mass resolution
- Additional e⁺ polarisation increases the sensitivity by the same factor as e⁻ polarisation alone

Introduction	Tools	Energy Resolution	Preliminary Analysis Results	Summary And Outlook

Outlook

- Understand energy resolution
- Use better photon reconstruction (Pandora, photon finder by P. Krstonosic)
- Include reducible (experimental) backgrounds
- Include beamstrahlung / machine backgrounds
- Study different variations of detector concept
- ► Have a look at SUSY scenarios in which radiative Neutralino production is the only open SUSY channel at the ILC (→ talk by O.Kittel in SUSY / Polarisation sessions)