

Physics Review Committee - DESY, May 10-11, 2007

Optimising CMOS Pixel Sensors for the ILC Micro-Vertex Detector

Marc Winter (IPHC/Strasbourg)

on behalf of DAPNIA/Saclay, LPSC/Grenoble, LPC/Clermont-F., DESY, Uni. Hamburg, JINR-Dubna & IPHC/Strasbourg

contributions from IPN/Lyon, Uni. Frankfurt, GSI-Darmstadt, STAR coll.(LBNL, BNL)

▷ More information on IPHC Web site: http://wwwires.in2p3.fr/ires/web2/rubrique.php3?id_rubrique=63

OUTLINE

- Reminder on CMOS sensors: \Rightarrow Specific advantages \Rightarrow Vertexing applications
- Achieved performances (AMS-0.35 OPTO fab. process) :
 - \Rightarrow Detection efficiency \Rightarrow Spatial resolution \Rightarrow Operating temperature \Rightarrow Radiation tolerance
- Fast read-out architecture: \Rightarrow Progress since May 2005 \Rightarrow Plans until 2009
- Summary

p-type low-resistivity Si hosting n-type "charge collectors"
signal created in epitaxial layer (low doping):
Q ~ 80 e-h / μm → signal ≤ 1000 e⁻
charge sensing through n-well/p-epi junction
excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)

Specific advantages of CMOS sensors:

CMOS-VD

- \diamond Signal processing μ circuits integrated on sensor substrate (system-on-chip) \mapsto compact, flexible
- \diamond Sensitive volume (\sim epitaxial layer) is \sim 10–15 μm thick \longrightarrow thinning to \lesssim 30 μm permitted
- \diamond Standard, massive production, fabrication technology \longrightarrow cheap, fast turn-over
- ♦ Room temperature operation
- Attractive balance between granularity, mat. budget, rad. tolerance, r.o. speed and power dissipation
 - \bowtie Very thin sensitive volume \rightarrow impact on signal magnitude (mV !)
 - \bowtie Sensitive volume almost undepleted \rightarrowtail impact on radiation tolerance & speed
 - ► Commercial fabrication (parameters) → impact on sensing performances & radiation tolerance

Vertexing Applications of MIMOSA Sensors

Vertex Detector upgrade for STAR expt at RHIC

- ightarrow 2–3 cylindral layers : \sim 2000/3000 cm 2
- $m \simeq \sim$ 500 millions pixels (\leq 30 μm pitch)

Beam telescope (FP6 project EUDET)

- ightarrow provide \lesssim 1 μm resolution on 3 GeV e $^-$ beam (DESY)

ILC vertex detector (option)

CMOS-VD

- ightarrow 5–6 cylindrical layers : \gtrsim 3000 cm 2
- ightarrow 300-500 milion pixels (20–40 μm pitch)
- ightarrow 1st complete ladder prototype \sim 2010

CBM vertex detector (FAIR/GSI)

- ightarrow 3 rectangular layers : \sim 2000 cm 2
- ightarrow 200–300 milion pixels (\sim 20–30 μm pitch)

Numerous MIMOSA chips tested on H.E. beams (SPS, DESY) \mapsto well established perfo. (analog output):

- Best performing technology: AMS 0.35 μm OPTO
 - (\sim 11 μm epitaxy \rightarrowtail "20 μm " option being tested)
- N ~ 10 e⁻ \mapsto S/N \gtrsim 20 30 (MPV) $\Rightarrow \epsilon_{det} \gtrsim$ 99.5 % • T_{oper}. \gtrsim 40 °C
- Technology without epitaxy also performing well : very high S/N but large clusters (hit separation)
- Macroscopic sensors : MIMOSA-5 (\sim 3.5 cm²; 1 Mpix) MIMOSA-20 (1x2 cm²; 200 kpix) MIMOSA-17 (0.8x0.8 cm²; 65 kpix)

- Efficiency vs rate of fake clusters :
 - \bullet vary cut on seed pixel : 6 \rightarrowtail 12 ADC units (N \sim 1.5 U.ADC)
 - ullet vary cut on Σ of crown charge : 0, 3, 4, 9, 13, 17 ADC units

 \Rightarrow ϵ_{det} \sim 99.9 % for fake rate \sim 10 $^{-5}$

Spatial Resolution (vs ADC resolution)

Single point resolution versus pixel pitch:

- \Leftrightarrow clusters reconstructed with eta-function, exploiting charge sharing between pixels
- $\Rightarrow \sigma_{
 m sp} \sim 1.5 \ \mu
 m m$ (20 μm pitch) $ightarrow \sigma_{
 m sp} \lesssim 3~\mu{
 m m}$ (40 μm pitch)

CMOS-VD

obtained with signal charge encoded on 12 bits

- σ_{sp} dependence on ADC granularity:
 - ⇔ minimise number of ADC bits
 - \rightarrow minimise dimensions, t_{r.o.} & P_{diss}
 - ← effect simulated on real MIMOSA data
 (20 μm pitch ; 120 GeV/c π^- beam)
 - $ightarrow \sigma_{sp} < 2 \ \mu m$ (4 bits) ightarrow 1.7–1.6 μm (5 bits) (MIMOSA-9 : 20 μm pitch; T= + 20 $^{\circ}$ C)

0 2 4 6 8 10 12 Number of ADC bits

 \Rightarrow Warning : results based on simple pixel (N \leq 10 e⁻ENC) \Rightarrow rad. tol. pixel integrating CDS (N \lesssim 15 e $^-$ ENC) not yet evaluated

AMS 0.35 OPTO engineering run (fabricated in Summer 2006):

 \simeq 2 + 4 wafers (8" \Rightarrow 50 reticles/wafer) \simeq 2 epitaxy thicknesses : \sim 11 & 15 μm \Leftrightarrow "14 μm " & "20 μm " options

\diamond triggered by MIMO \bigstar -3 (= MIMOSA-20) fabrication :

200 kpixels, \sim 2 cm 2 , 2 // outputs, t $_{r.o.} \lesssim$ 4 ms

\diamond includes 8 other chips :

- * MIMOSA-16 : fast col. // archi. like MIMOSA-8
- * MIMOSA-17 (MIMO \pm -3M) : 0.8 x 0.8 cm², rad.tol., 800 μs
- \hookrightarrow EUDET beam telescope arms, CBM Vx Det. demonstrator
- st MIMOSA-18 (IMAGER) : precision \lesssim 1 μm (EUDET: DUT)
- **% MIMOSA-19 bio-med. imaging: special diode shape**
- **※** test structures : in-pixel amplification, discrimination, ...
- * ADCs: flash from LPCC

Status of tests:

- \diamond 2 wafers tested in 2006 (1 with "14" & 1 with "20" μm epitaxy) \mapsto fab. mistake (non uniform effect on sensors)
 - \longleftrightarrow not dramatic: "20 μm " option was characterised with $^{55}{\rm Fe}$ source
- \diamond Second batch fabricated in 2007 \mapsto 2 wafers presently under test

MIMOSA-20 : CCE for "14" and "20" μm Epitaxy

IPHC Institut Pluridisciplinaire Hubert CURIEN STRASOLRG

Réunion Capteurs CMOS, lundi 26 fevrier 2007

Comparaison pour Mimosa20 entre les deux types de couches épitaxie

MIMOSA-20 ("14" & "20" μm epitaxy) illuminated with ⁵⁵Fe source \rightarrow charge collected in seed pixel, 2x2, 3x3 and 5x5 clusters

ightarrow CCE ("14" μm) \sim 30–40 % higher than CCE ("20" μm)

CMOS-VD

Requirements:

※ beamstrahlung (GuineaPig X 3):
$$\lesssim$$
 10³ e[±]_{BS}/cm²/25 μs → \lesssim 2·10¹²e[±]_{BS}/cm²/yr
 $↔$ O(100) kRad/yr − O(10¹¹) n_{eq}/cm²/yr (NIEL ~ 1/30)

***** neutron gas: $\leq 10^{10} \text{ n}_{eq}/\text{cm}^2/\text{yr}$

Non-ionising radiation tolerance:

***** MIMOSA-15 irradiated with O(1 MeV) neutrons tested on DESY e⁻ beams : Very Preliminary results

• T = - 20 $^\circ$ C, t $_{r.o.}$ \sim 700 μs	Fluence	0	0.47	2.1	5.8 <mark>(5/2)</mark>	5.8 (4/2)
\circ 5.8 \cdot 10 12 n $_{eq}$ /cm 2 values derived	S/N (MPV)	$\textbf{27.8}\pm0.5$	$\textbf{21.8}\pm0.5$	$\textbf{14.7}\pm\textbf{0.3}$	8.7 ± 2.	7.5 ± 2.
with standard and with soft cuts	Det. Eff. (%)	100.	$\textbf{99.9}\pm0.1$	$\textbf{99.3}\pm0.2$	77. \pm 2	84. ± 2.

Ionising radiation tolerance:

- * Pixels modified against hole accumulations (thick oxide) and leakage current increase (guard ring)
- * MIMOSA-15 tested with \sim 5 GeV e⁻ at DESY after 1 MRad (10 keV X-Ray) exposure : Very Preliminary results

• T = - 20 $^{\circ}$ C, t $_{r.o.}$ \sim 180 μs	Integ. Dose	Noise	S/N (MPV)	Detection Efficiency
• $t_{r.o.} \ll 1$ ms crucial at T_{room}	0	9.0 ± 1.1	$\textbf{27.8} \pm \textbf{0.5}$	100 %
	1 MRad	10.7 \pm 0.9	19.5 \pm 0.2	99.96 \pm 0.04 %

Preliminary conclusion:

* at least 3 years of running viable at T_{room} (or close to)

* further assessment needed (also with \sim 10 MeV e⁻) : sensors with integ. CDS, ADC,

- 2) Develop ILC sensors (mainly for inner layers) extrapolating from EUDET & STAR:
 - $\diamond~$ increase row read-out frequency by \sim 50 %
 - replace discriminators with ADCs

MIMOSA-8: TSMC 0.25 μm digital fab. process (< 7 μm epitaxy)

- ullet 32 // columns of 128 pixels (pitch: 25 μm)
- ullet read-out time \sim 50 μs (resp. 20 μs) with (resp. without) DAQ
- on-pixel CDS
- discriminator (and DS) integrated at end of each of 24 columns

Detection performance with 5 GeV/c e^- beam (DESY):

Excellent m.i.p. detection performances despite modest thickness of epitaxial layer

st det. eff. \sim 99.3 % for fake rate of \sim 0.1 % st discri. cluster mult. \sim 3–4 st P $_{diss}$ \lesssim 500 μ W / col.

 $\triangleright \triangleright$ Architecture validated for next steps: techno. with thick epitaxy, rad. tol. pixel at T_{room}, ADC, Ø, etc.

Tests of MIMOSA-16

MIMOSA-16 design features :

- AMS-0.35 OPTO translation of MIMOSA-8 $\hookrightarrow \sim$ 11–15 μm epitaxy instead of < 7 μm
- 32 // columns of 128 pixels (pitch: 25 μm)
- on-pixel CDS (DS at end of each column)
- 24 columns ended with discriminator
- 4 sub-arrays :
 - S1 : like MIMOSA-8 (1.7x1.7 μm^2 diode)
 - S2 : like MIMOSA-8 (2.4x2.4 μm^2 diode)
 - S3 : S2 with ionising radiation tol. pixels
 - S4 : with enhanced in-pixel amplification (against noise of read-out chain)

Preliminary tests of analog part ("20 μm " epitaxy) performed in Saclay:

- ullet sensors illuminated with 55 Fe source and F $_{r.o.}$ varied up to \gtrsim 150 MHz
- measurements of N(pixel), FPN (end of column), pedestal variation, CCE (3x3 pixel clusters) vs $F_{r.o.}$

Tests of analog part ("14 μm " epitaxy) started in Saclay ightarrow first results (CCE)

Next steps : • digital part \geq June at IPHC • beam tests \gtrsim 4 Septembre at CERN (T4 – H6)

Later in 2007 : tests of sensors produced in 2nd batch

Pixel noise and charge collection efficiency for "20 μm option :

Temporal noise vs Frequency

Charge Collection Efficiency vs Frequency

Chip#0 (old mezzanine board)

Columns 28-31

\Rightarrow Noise performance satisfactory (like MIMOSA-8 and -15)

\Rightarrow CCE: very poor for S1 (1.7x1.7 μm^2) & poor for S2/S3 (2.4x2.4 μm^2)

ightarrow already observed with MIMOSA-15 but more pronounced for "20 μm " option

 \hookrightarrow suspected origin: diffusion of P-well, reducing the N-well/epitaxy contact, supported by CCE of S4 (4.5x4.5 μm^2 diode)

4

Several different ADC architectures under development at IN2P3 and DAPNIA

- ⇔ LPSC (Grenoble): Ampli + semi-flash (pipe-line) 5- and 4-bit ADC for a column pair
- ⇔ LPCC (Clermont) : flash 4+1.5-bit ADC for a column pair
- ⇒ DAPNIA (Saclay) : Ampli + SAR (4- and) 5-bit ADC

⇒ IPHC (Strasbourg) : SAR 4-bit and Wilkinson 4-bit ADCs

Lab	proto.	phase	bits	chan.	F _{r.o.} (MHz)	dim. (μm^2)	${\sf P}_{diss}$	eff. bits	Problems
LPSC	ADC1 ADC2 ADC3	tested fab design	5 4 4	8 8 > 8	15-25 25 25	43x1500 40x943	1700 μW 800 μW	4	Offset & N
LPCC	ADC1 ADC2	tested fab	5.5 5.5	1 1	5(T)–10(S) 10	230x400 40x1100	20 000 μW 1000 μW	2.5	P_{diss} & bits
DAPNIA	ADC1 ADC2	tested fab	5 5	4 4	4 4	25x1000 25x1000	300 μW 300 μW	\gtrsim 2	Missing bits
IPHC	ADC1	fab	4	16	10	25x1385	660 μW		
	ADC2	fab	4	16	10	25x1540	545 μW		

 \Rightarrow 1st mature ADC design expected to come out in 2007/08

 \Rightarrow Submission of 1st col. // pixel array proto equipped with ADCs in Spring 2008 \rightarrow with integ. \emptyset in 2009

Ist chip (SUZE-01) with integrated \emptyset and output memories (no pixels) :

```
* 2 step, line by line, logic (adapted to EUDET and STAR):
```

```
◇ step-1 (inside blocks of 64 columns) :

identify up to 6 series of ≤ 4 neighbour pixels per line
delivering signal > discriminator threshold
◇ step-2 : read-out outcome of step-1 in all blocks
and keep up to 9 series of ≤ 4 neighbour pixels

* 4 output memories (512x16 bits) taken from AMS I.P. library
* surface ~ 3.6 x 3.6 mm<sup>2</sup>
```

Status :

★ design under way

- * submission scheduled for end of June
- \hookrightarrow back from foundry end of Septembre
- * tests completed by end of year

CMOS-VD

Extension of MIMOSA-16 \rightarrow larger surface, smaller pitch, optimised pixel, JTAG, more testability

Status :

- * Design under way at IPHC (also at DAPNIA)
 - \hookrightarrow submission end of Septembre '07

Roadmap towards the Final Chip for EUDET & STAR $\rightarrow ILC$

Spring 2008 : MIMOSA-22+
st MIMOSA-22 complemented with $arnothing$ (SUZE-01)
* 1 or 2 sub-arrays (best pixel architectures of MIMOSA-22)
st larger surface : active area \sim 0.5 cm 2
🗠 final column depth (544/576 pixels)
\simeq \gtrsim 1/4 of final number of columns (\geq 256 / 1088)
opportunity for engineering run combining various chips
End 2008 / early 2009 : Final chip for EUDET
* Extension of MIMOSA-22+
st Active area : 1088 columns of 544/576 pixels (2 x 1 cm 2)
st Read-out time \sim 100 μs
st Chip dimensions : 20 x 12 mm $^2 ightarrow$ engineering run

Next steps for ILC:

CMOS-VD

* incorporate ADC (with integrated discrimination) \rightarrow outer layers

st increase r.o. frequency by \sim 50 % (new Ø & memory design) \rightarrowtail inner layers

CMOS sensors are developed for running conditions with beam background >> MC simulations

Fast read-out sensors progressing steadily :

* col. // architecture with discriminated output operational

* ADCs close to final design (\leq beginning 2008)

 $st \varnothing \mu$ circuits : 1st generation (EUDET, STAR) close to fabrication

AMS-035 OPTO fabrication technology assessed \rightarrowtail baseline for R&D :

* detection efficiency (T), radiation tolerance, noise \rightarrow fake hits, etc.

 \hookrightarrow equip EUDET, STAR, CBM demonstrators in 2007/2008 with new generation of full scale sensors

 \hookrightarrow real experimental conditions

Milestones until final chip well identified :

* 1st step : final sensors with discriminated binary charge encoding for EUDET (2009) and STAR (2010)

st 2nd step : replace discri. with ADC (outer layers) and increase r.o. frequency by \sim 50 % (inner layers)

st also: find final fabrication process (< 0.2 μm feature size)

Concern:

* system integration issues not covered \rightarrow prototype ladder ????

BACK-UP SLIDES

High r.-o. speed, low noise, low power dissip., highly integrated signal processing architecture: * analog part (charge collection, pre-amp, CDS, ...) inside pixel

***** mixed (ADC) and digital (sparsification) micro-circuits integrated inside pixel or aside of active surface

Optimal fabrication proc	ess:				
* epitaxial layer thickne	ess * number	of metal layers	<mark>∗ yield</mark>		
<pre>* (dark current)</pre>	<mark></mark> ★ cost		st life time of ($<$ 0.2	2 μm) process	
Radiation Tolerance:					
* dark current	<mark>⋇</mark> doping p	orofile	(※ latch-up)		
Industrial thinning proce	edure:				
* minimal thickness	* mechanical prop.	* individual	chips rather than wafers (?)	∦ yield	
Room temperature opera	ation:				
* minimise cooling requirements		* performances after irradiation			

Main Requirements

for the ILC Vertex Detector :

physics & running condition requirements

 $\sigma_{IP} = \mathbf{a} \oplus \mathbf{b} / \mathbf{p} \cdot \mathbf{sin}^{3/2} \theta$ with $\mathbf{a} < 5 \ \mu m$ and $\mathbf{b} < 10 \ \mu m$

 \triangleright limits on a and b are still "very educated guesses"

 \triangleright SLD: **a** = 8 μm and **b** = 33 μm

Upper bound on a drives the pixel pitch and the radii of the inner and outer layer of the Vx Det.

Upper bound on b drives radius and material budget of inner layer (& beam pipe)

Constraint on σ_{IP} satisfies simultaneoulsy requirement on double hit separation in inner most layer (\sim 30 – 40 μm)

Constraint on a :
$$\mathbf{z_{IP}} \approx \frac{\mathbf{z_0} \cdot \mathbf{R_4} - \mathbf{z_4} \cdot \mathbf{R_0}}{\mathbf{R_4} - \mathbf{R_0}} \implies \mathbf{a} = \sigma_{IP} \approx \frac{(\mathbf{R_4^2} \cdot \Delta \mathbf{z_0^2} + \mathbf{R_0^2} \cdot \Delta \mathbf{z_4^2})^{1/2}}{\mathbf{R_4} - \mathbf{R_0}}$$

• Numerical examples based on ${f R_4}=4\cdot {f R_0}$ (ex: ${f R_4}/{f R_0}$ = 60 / 15 mm or 64 / 16 mm)

 $ightarrow \Delta z_4 = \Delta z_0 = \sigma_{sp} = 3 \ \mu m \Rightarrow a \approx 1.37 \cdot 3 \ \mu m \approx 4.1 \ \mu m$

 $ightarrow\Delta z_4=5\,\mu m$ and $\Delta z_0=2.5\,\mu m$ \Rightarrow $a~pprox~1.5\cdot2.5\,\mu m$ $pprox~3.8\,\mu m$

 \Rightarrow Twice larger pitch in outer layer than in inner most layer satisfies constraint ${
m a} < 5~\mu{
m m}$

$$\triangleright \mathbf{b} < \mathbf{10} \ \mu \mathbf{m} \ \Rightarrow \mathbf{t} \lesssim \mathbf{0.4} \ \%$$
$$\triangleright \mathbf{e_{pipe}} \ \approx \ \mathbf{400} - \mathbf{500} \ \mu \mathbf{m} \ \mapsto \ \frac{\mathbf{e_{pipe}}}{\mathbf{X_0^{Be}}} \sim \mathbf{0.11} - \mathbf{0.14} \ \% \ \mapsto \mathbf{t_{L0}} \lesssim \mathbf{0.25} \ \%$$

Ladders equipped with CMOS sensors & developed for STAR HFT reach already \sim 0.3 % ${f X_0}$

Time Structure for the ILC

Backgrounds

-23-

3

Ist layer (L0) : \gtrsim 5 hits/cm²/BX for 4T / 500 GeV / R_0 = 1.5 cm / no safety factor $\mapsto \lesssim$ 1.8·10¹² e[±]/cm²/yr (safety factor of 3)

2nd layer: 8 times less (direct)
 3rd layer: 25 times less (direct)

Consequences on Occupancy in 1st layer (L0): \leq 0.9 % hit occupancy in 50 μs (r.o. time of TESLA TDR) \hookrightarrow signal spread on \leq 4.5–9 % pixels (cluster multiplicity \sim 5-10)

⇒ 1) aim for shorter read-out time in L0 than in TDR → typically ≤ 25 µs (compromise with power dissipation, multiple scattering, ...)
2) aim for shorter read-out time in L1 than in TDR → typically ~ 50 µs (vs 250 µs) and presumably smaller radius (e.g. ~ 20 - 22 mm) (use tracks extrapolated from L1-4 down to L0)
3) aim for relaxed read-out time in L2, L3, L4: ~ 100 - 200 µs (vs 250 µs)

 \hookrightarrow depends on backscattered e^\pm rate

Consequences on Radiation Tolerance in L0 :

★ dose integrated over 3 years: $\leq 5.4 \cdot 10^{12} \text{ e/cm}^2 \longrightarrow \leq 2 \cdot 10^{11} \text{ n}_{eq}/\text{cm}^2$ (NIEL ~ 1/30)
♦ neutron dose integrated over 3 years much smaller : $\leq 3 \cdot 10^{10} \text{ n}_{eq}/\text{cm}^2$ (safety factor of 10)

 ${igsim}$ \lesssim 25 μs in L0:

columns of 256 pixels (20 μm pitch) \perp beam axes read out in // at \sim 10 MHz \rightarrow 5 mm depth

 \sim 50 μs in L1:

columns of 512 pixels (25 μm pitch) \perp beam axes read out in // at \sim 10 MHz \rightarrow 13 mm depth

100 mm

2 mm wide side band hosting ADC, sparsification, ... \hookrightarrow effect on material budget SMALL :
b increases by \sim 5 – 10 %

Option with discriminator instead of ADC : \sim 1 mm wide side band \Rightarrow effect on ${
m b}$ < 5 %

Design inner most layer (L0) to minimise its sensitivity to (unexpected) high occupancy (\gtrsim 10 %)

Double sided layer \rightarrowtail ~ 1 mm long mini-vectors connecting impacts on both sides of layer

▷ Needs a detailed feasibility (engineering) study

CMOS-VD

Geometry : 5 cylindrical layers (R = 15 – 60 mm), $||cos\theta|| \le 0.90 - 0.96$ (possibly 6 layers)

L0 and L1 : fast col. // architecture

L2, L3 and L4 : possibly multi-memory pixel architecture (?)

Reference Pixel pitch varied from 20 μm (L0) to 40 μm (L4) by 5 μm steps ightarrow minimise P $_{diss}$

Layer	Radius (mm)	Pitch (μm)	t _{r.o.} (μs)	N_{lad}	N _{pix} (10 ⁶)	P ^{inst} diss (W)	P ^{mean} diss (W)
L0	15	20	25	20	25	<100	<5
L1	\leq 25	25	50	≤26	\leq 65	<130	<7
L2	37	30	<200	24	75	<100	<5
L3	48	35	<200	32	70	<110	<6
L4	60	40	<200	40	70	<125	<6
Total				142	305	<565	<3-30

Ultra thin layers: \lesssim 0.2 % X $_0$ /layer (extrapolated from STAR-HFT; 35 μm thick sensors)

Very low P_{diss}^{mean} : << 100 W (exact value depends on duty cycle) Fake hit rate $\leq 10^{-5} \rightarrow$ whole detector \cong close to 1 GB/s (mainly from e_{RS}^{\pm})

Alternative Approach : SiD Vertex Detector Geometry

Impact parameter resolution :

 $\Rightarrow a < 5 \ \mu m \quad \checkmark$ $\Rightarrow b < 10 \ \mu m \quad \checkmark \Rightarrow \text{thinning } \checkmark \text{, ladder design } \checkmark \text{ (from STAR), stitching not yet investigated}$

Radiation tolerance at room temperature :

Fast, low power, integrated signal processing :

- \Rightarrow read-out speed \checkmark
- \Leftrightarrow integrated ADC \rightarrowtail under developement
- \Leftrightarrow integrated sparsification \rightarrowtail studies starting
- \Rightarrow power dissipation \checkmark (duty cycle < 1/20) \rightarrowtail pulsed powering not fully assessed for this duty cycle

Overall geometry :

- ***** matching with neighbour trackers
- Sensor geometry and features
 - Heat removal
 - Thermal distortions
 - Handling thin silicon
 - Assembly and alignment procedures
 - Connections, cabling, and optical fibers
 - Paths for cables, optical fibers, and air flow
 - Lorentz forces

 \Rightarrow Only few people taking care of so many crucial and delicate topics

Observed Radiation Tolerance

of MIMOSA Sensors

MIMOSA-15 irradiated with neutrons of O(1 MeV) at JINR (Dubna) \mapsto doses of 0.47 / 2.1 / 5.8 \cdot 10 12 n $_{eq}/cm^2$

Performance assessment of sensors (20 μm pitch) installed on \sim 5 GeV e $^-$ beam at DESY (July 2006)

 \Rightarrow running conditions: T = - 20 $^{\circ}$ C, t $_{r.o.}$ \sim 700 μs (2.5 MHz)

 $\hookrightarrow \textbf{Very Preliminary results ...}$

Mimosa 15: Efficiency (%) vs. Irradiation dose

Pixel design needs to be modified to withstand high radiation doses (esp. at T_{room}):

- removal of thick oxide nearby the N-well (against charge accumulation)
- implantation of P+ guard-ring in polysilicon around N-well (against leakage current)

Characterisation of MIMOSA-11 in laboratory : Noise (e⁻ENC) vs Integration time (ms)

for Ordinary and Radiation Tolerant pixels, measured at T = - 25° C, + 10 $^{\circ}$ C and + 40 $^{\circ}$ C

Characterisation of MIMOSA-15 with \sim 5 GeV e⁻ at DESY after 1 MRad (10 keV X-Ray) exposure : • Radiation Tol. pixels, measured at T = - 20°C with t_{r.o.} \sim 180 μ s (10 MHz) \Rightarrow Very preliminary results :

% 1 MRad tolerance demonstrated at T $<0^{\circ}C$ (read-out time \ll 1 ms, no CDS)

Integ. Dose	Noise	S/N (MPV)	Det. Efficiency	
0	9.0±1.1	27.8±0.5	100 %	
1 MRad	10.7±0.9	19.5±0.2	99.96±0.04 %	

* need to cross-check detection performance at T_{room} with pixels including CDS

Investigation of sensitivity to \sim 10 MeV electrons (NIEL factor \sim 1/30)

 \hookrightarrow similar to beamstrahlung e $^\pm$ in 4 T field at 15 mm radius

- 1) MIMOSA-9 exposed to $10^{13} e_{9.4MeV}^{-}$ /cm² in Darmstadt : equivalent to \leq 300 kRad/cm² and \sim 3.10¹¹n_{eq}/cm²
- 2) Irradiated chip tested with \sim 6 GeV e $^-$ at DESY
 - \hookrightarrow Test result at -20°C : S/N \sim 23 $\mapsto \epsilon_{det} > 99.3\%$ (before irradiation: S/N \sim 28 and ϵ_{det} = 99.93 \pm 0.03 %)

> Sensors still need to be tested at room temperature (compatible with very light cooling system)

Developments simultaneously oriented towards well focussed applications and towards generic objectives useful to several applications

Application	version	2006	2007	2008	2009	2010	2011
STAR	HFT-1	final proto	Prod.				
	HFT-2	R&D	R&D	proto final	Prod.		
EUDET	BT-1	2 Prod.					
	BT-2	R&D	final proto ?	Prod.			
Imaging		R&D	final proto	Prod. ?			
Generic	topics						
Fast sensors :	o architecture	R&D	R&D	R&D +	R&D ++	ILC proto	CBM proto
	○ ADC	R&D	final proto	7			
	 digital 	pre-study	R&D	final proto	7		
Radiation tolerance		R&D	R&D	R&D	R&D	\nearrow	
Fabrication technologies		R&D	R&D	R&D	R&D	∕ ???	
Thinning		R&D	D	D	OK ???		