

Beam Delivery System => EDR

Andrei Seryi for BDS Area leaders Deepa Angal-Kalinin, A.S., Hitoshi Yamamoto and for BDS group

> LCWS07 June 2, 2007 at DESY

Global Design Effort

Work at this meeting

- ATF2 Project meeting on May 31
 - ~20 presentations focused on various aspects of hardware status and commissioning
- BDS and MDI reports (~30)
 - summary of MDI part to be reported tomorrow by Brett Parker
- And discussion of EDR plans

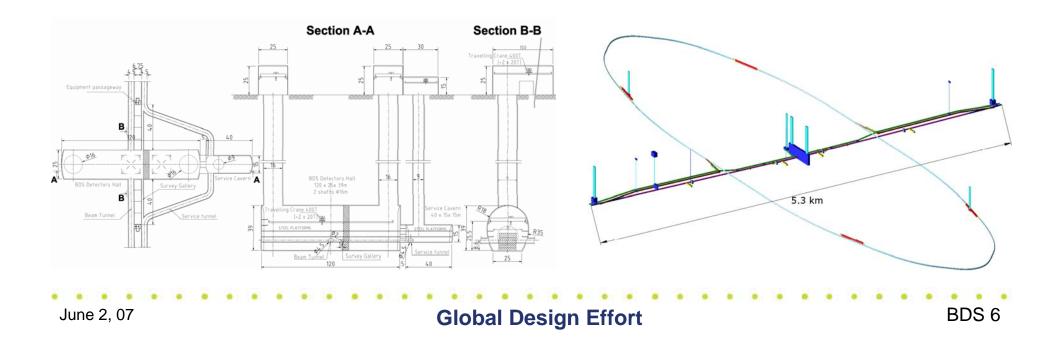
- EDR planning focus on cost uncertainty reduction, & performance uncertainty reduction:
 - design of systems at appropriate level of details
 - build & test critical prototypes to ensure performance
- Major focus in EDR phase will be on system engineering, integration and value engineering
- Schedule: take full schedule into consideration (~3year for EDR, two years for Approval phase and 7 years for construction)
 - continue optimization and final design after EDR and during earlier years of construction

Interfaces & specs

- Definition & optimization of interfaces is very important part of EDR work and of the overall optimization
- Interfaces & specs for technical systems
 - performance
 - connections
 - functionality ...
- Interfaces for beam parameters

Interfaces for beam parameters

Parameter	Units	Value
Length (linac exit to IP distance)/side	m	2226
Length of main (tune-up) extraction line	m	300 (467)
Max Energy/beam (with more magnets)	${\rm GeV}$	250 (500)
Distance from IP to first quad, L^*	m	3.5 - (4.5)
Crossing angle at the IP	mrad	14
Nominal beam size at IP, σ^* , x/y	nm	639/5.7
Nominal beam divergence at IP, θ^* , x/y	μ rad	32/14
Nominal beta-function at IP, β^* , x/y	mm	20/0.4
Nominal bunch length, σ_z	$\mu { m m}$	300
Nominal disruption parameters, x/y		0.17/19.4
Nominal bunch population, N		2×10^{10}
Beam power in each beam	MW	10.8
Preferred entrance train to train jitter	σ_y	< 0.5
Preferred entrance bunch to bunch jitter	σ_y	< 0.1
Typical nominal collimation aperture, \mathbf{x}/\mathbf{y}		8-10/60
Vacuum pressure level, near/far from IP	nTorr	1/50

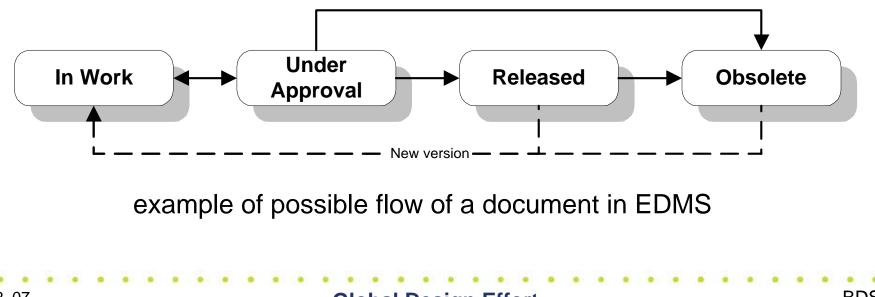

- These are interface beam
 parameters
- This list is not complete and also may not have corresponding match in the linac outgoing beam parameters
- Standard list of interface beam parameters need to be developed, made consistent, and optimized at the overall level

ir

Global Design Effort

BDS – CFS optimization

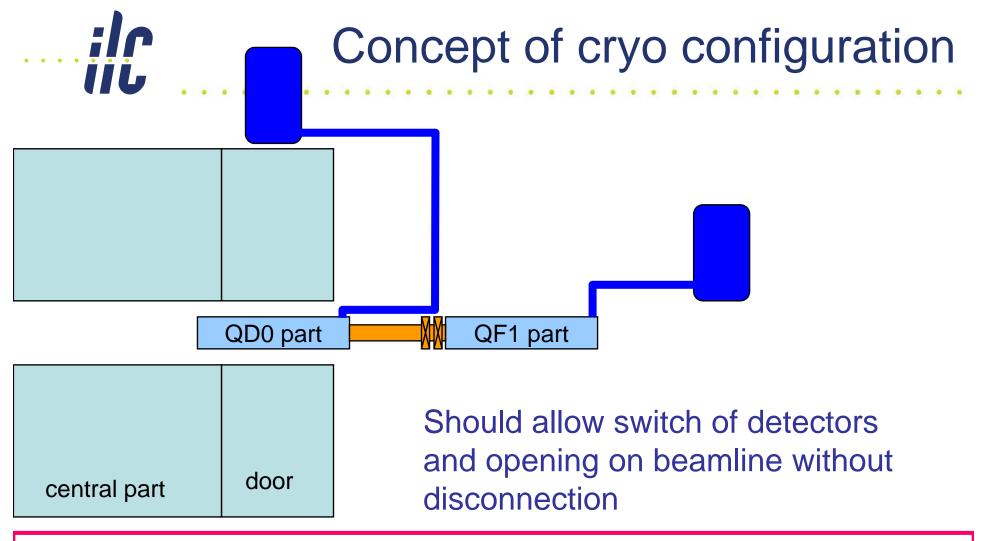
- Clarification & optimization of requirements and interfaces with CFS design will be the major focus of EDR work
 - sizes, volumes, length, T stability, air, water, penetrations, etc.



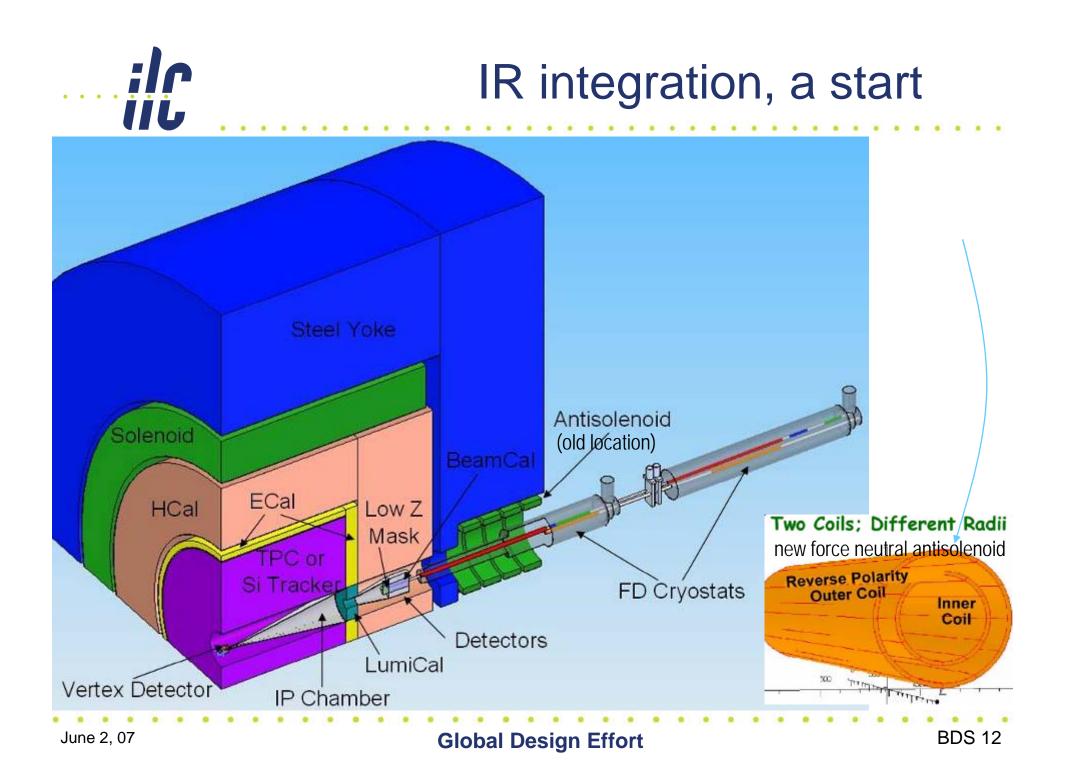
Reviews

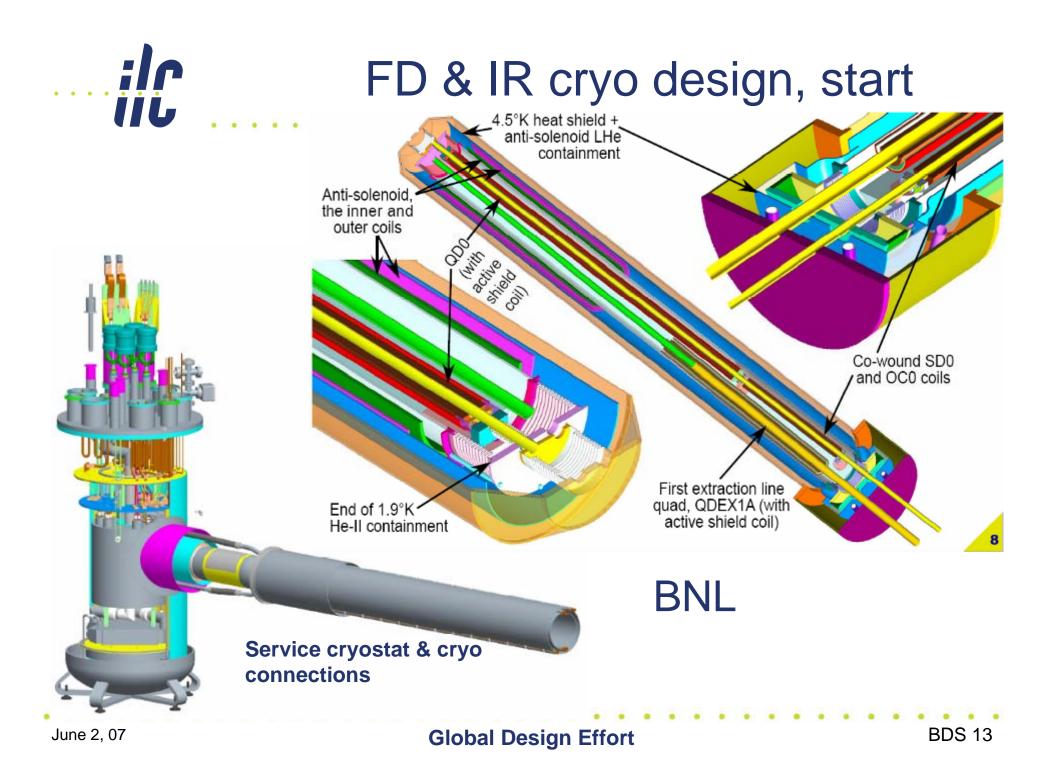
- Overall project reviews
 - reviews of the BDS within the overall ILC
 - is a tool for overall optimization
 - driven by Project Manager
- Reviews within BDS area
 - reviews of BDS technical subsystems => to verify maturity of design and directions of design optimization
 - reviews of interfaces => overall optimization
 - driven by area managers

- The new workspace is oncoming
- Should be effective tool to store documents, drawings, tables of interface parameters, will allow to control the work-flow, to make assignments of the tasks, and so on


Global Design Effort

Balance of R&D and engineering


- Integrated design of IR, development of IR superconducting magnets, build engineering prototype of FD magnets, design study to ensure IR mechanical stability, design of push-pull arrangements
- development of crab cavity systems, test phase control system with two single cell cavities, build single multi-cell cavity
- design, construction, commissioning and operation of ATF2 test facility
- develop laser wires for beam diagnostics, *prototype laser wires at ATF2*
- development of intra-train feedback, *prototype at ATF2*
- develop beam dump design & *study of beam dump window survivability*
- develop collimator design, *verify collimation wake-fields & beam damage*
- development and tests of MDI type hardware such as energy spectrometers, IP feedback BPMs, beamcals, etc.
- and the design work, which does not involve hardware development but use results of the above listed work (*hardware in italic*)


Increased engineering efforts in all these activities, plus overall system engineering and integration of BDS

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
		EDR		Арр	roval		turned 0	1	Constructio	n		1	Commiss.
Constraints				LHC physics	total length frozen		tunnel & optics layout frozen		optics details frozen		tunnels ready for install-n		
Beam dumps	beam dump critical tests	conceptual de	esign and	pre approval		beam dum	o final engine	eering	b.dump design frozen	beam dump construction		beam dump installed	
crab cavity	phase contro fabrication; c	& test of con ol system; cav conceptual cry op and test wit	vity vostat design;	design of cry integration; b one cavity		beam tests cavities	of two	final engine	eering	production		installed	
ATF2	ATF2 construinstallation. S	Start of	Commission ing	Beam size and optics results	Beam stability results	2nd phase, smaller em beam size	e.g. SC FD; ittance &	Instrumenta developme tests at bea	nts and				
Final Doublet		design; full le ability design y tests		Stability tests	s & design	final design		production		lab tests	installation commission	ning	
Detectors		design; select ntinue design		Design optin	nization	final design production	and start of	Construct, assemble and pre-commis surface		ission on	Lower down & commiss.		
IR integrated	Conceptual eng. design of IR vaccum chambers; supports; pacman and moving shielding; cryogenic; service platform; detector moving system; cranes; etc.		Detailed eng integrated IF finalized cho detectors for	with ice of two	final design and start of production		production		installation and pre- commissioning				
Magnets	conceptual d definition of i	of number of lesign of most interfaces; De nd other spec se design	t magnets; tailed design		layouts with location, and	final design prototypes	& needed	production			installation commissior		
Collimation	1 3 3 4 1 1 1 1 5 5 5 5 1 1 1	mation wakef ge tests; conc		Detailed eng optimization into beamline	& integration	final design production		production			installation commission		
Instrumentat ion		er wires; test f econdary bea eng. design		Detailed eng optimization into beamline	& integration	final design production	prototypes		tonto	tive s	installation commission	ning	c
Vacuum systen		conceptual ei ign of IR vacu		Detailed eng optimization of beamlines	& integration	final design		 Che the the the the the the the the the t	ork in		installation	ule 0	

For IR integrated design, the goal, in a nutshell, is to evolve from cartoon-concept level schemes like the one above, to detailed 3d drawings of the system

Workshop on ILC Interaction Region Engineering Design SLAC, September 17-21, 2007 http://www-conf.slac.stanford.edu/ireng07/

- Goal: To review and advance the design of the subsystem of the Interaction Region of ILC, focusing in particular on their integration, engineering design and arrangements for push-pull operation.
- ... goal is to make progress on the design of the ILC IR through focused preparation before and during the workshop...
- The International Program and Advisory Committee is being formed. Its charge includes organization of preparatory work before the workshop and production of conceptual solutions and drawings that could be further discussed and reviewed at the workshop...
 - this is an attempt to align the organization of the workshop with EDR organization

IR Eng. workshop: tentative working groups

Group A	Overall detector design, assembly, detector moving, shielding. Detector design for on-surface assembly and underground assembly procedures. Beamline pacman shielding, detector shielding design.
Group B	IR magnets design and cryogenics system design. Cryogenic system design, connections, flexible cryo lines, safety issues. IR magnet engineering design, support, integration with IR, masks, Luminosity & Beam calorimeters, deign of IR vacuum chamber, connection to elements, assembly-disassembly procedures, integration of near IR masks and overall integration of crab cavity.
· · ·	
Group C	Conventional construction of IR hall and external systems. Lifting equipment, IR electronics hut, cabling plant, services, shafts, service caverns, utilities, movable shielding; design solutions to meet alignment and vibration tolerances
Group C	equipment, IR electronics hut, cabling plant, services, shafts, service caverns, utilities, movable shielding; design solutions to meet

Working groups are to study the issues in advance of the workshop

- EDR work in BDS will focus on cost uncertainty reduction, and performance uncertainty reduction
- Major focus in EDR phase will be on system engineering and value engineering
- The major breakdown of Work Packages become clearer and the fine structure being worked on