

Damping Rings in the Engineering Design Phase

Andy Wolski Cockcroft Institute/University of Liverpool

ILC 2007

Global Design Effort

1

Contents

- Overview of technical presentations during the Damping Rings parallel (Thursday).
 - Lattice design
 - <u>Electron cloud</u> and vacuum system
 - Fast ion instability
 - <u>Impedance and impedance-driven instabilities</u>
 - Fast injection/extraction kickers
 - Low-emittance tuning
 - Instrumentation and diagnostics
 - Polarisation
 - Cornell program/CesrTA
 - LBNL program
- Outcome of discussions on Damping Rings organisation and milestones for the Engingeering Design Phase (Friday).

Lattice Design: Louis Emery/Aimin Xiao

OCS8 Ring Layout

- Positron and electron rings on top of each other
- Rings are counter-rotating
- Injection and extraction lines on each side would be in same tunnel
- SC RF cavities from different rings don't interfere with each other

Lattice Design: Yi-Peng Sun

ĪĪĿ

Vacuum and Ecloud: Oleg Malyshev

ASTeC.

Accelerator Science and Technology Centre

Conclusions

Fill patterns

• For case C, the ion density like this

lon density for 10 bunch trains for case C. n_b = 4346, N_0 = 1.29E10, N_{train} = 82. There are 53 bunches per train. Bunch spacing =2 RF buckets= 3.08 ns. Gap between trains= 71 RF buckets. Partial pressure of CO is 1 ntorr.

ILC 2007

Global Design Effort

40

Injection/Extraction Kickers: Takashi Naito

Injection/Extraction Kickers: Mark Palmer

Injection/Extraction Kickers: David Alesini

ILC kickers: uniformity of the deflecting field (2/2)

ILC 2007

Injection/Extraction Kickers: David Alesini

ILC 2007

Injection/Extraction Kickers: George Gollin

Hard disk drive write head technology for use in a damping ring extraction kicker?

We always think about spatially fixed devices and moveable beams.

BUT could one build an extraction kicker that was a sort of hard disk write head on steroids?

Hard disk write head (from discussions with Hitachi):

- 1 T field strength
- field direction can be changed at 1 GHz (soon 2 GHz)
- field volume is small, ${\sim}120~\mu m^3$ including flux return
- head positioning is accurate to a few nm

Extraction kicker needs 1 T·cm field integral. Can HDD head be

scaled up? Probably not: requires too much power!

George Gollin, LCWS07, DESY May 31, 2007

Low-Emittance Tuning: Kiyoshi Kubo

For lower emittance

We did some improvements to achieve ~5 pm emittance.

- Reduction of BPM offset error wrt. nearest magnet
- Reduction of optics error (magnet strength error)

Now, we need more improvement for ~ 2 pm.

- Further reduction of BPM offset error will be the first priority.
- New BPM electronics, is being tested.
- · Better resolution and stability. Then,
 - Reduce BPM offset error w.r.t. magnets from improved data for Beam Based Alignment.
 - Reduce optics error from improved response matrix data
- Better BBA has been demonstrated for a few (? one) quadrupole magnet- BPM pairs, recently.
- But,detailed simulations of BBA and Optics Test have not done yet.

Instrumentation: Manfred Wendt

Instrumentation: Manfred Wendt

- Overview of the Cornell Program
 - Recent efforts
 - Goals for EDR phase
- Review Highlights of Recent Activities
 - Wiggler optimization
 - Bypass line options to relax kicker requirements
 - Electron cloud studies
 - CesrTA design and planning
 - Diagnostics development
- Conclusion

Global Design Effort

1 🖓

2

Tentatively suggested Work Packages

- Lattice design
- Impedance and impedance-driven instabilities
- Electron cloud
- Ion effects
- Acceptance
- Orbit, optics and coupling correction
- Vacuum system
- Magnets and magnet supports
- Power systems
- 650 MHz RF system
- Injection and extraction systems
- Fast feedback systems
- Abort systems
- Instrumentation and diagnostics
- Systems integration
- ATF
- CesrTA...

Planning the Engineering Design Phase

ID	Task Name	Duration	2007 Otr 4 Otr 9 Otr 9 Otr 4	2008 Otr 4 Otr 9 Otr 9 Otr 4	2009	2010
1	Optics and beam dynamics	760 days				
2	Lattice design	600 day s	ù			•
14	Impedance and impedance driven instabilities	760 days	ù	-	•	
26	Electron cloud	6448 days	ù	-		, `
39	lon e ffects	600 day s	Ú – Ú – – – – – – – – – – – – – – – – –	-		
41	Othe r collective effects	600 day s	V			
47	Acceptance	700 days	ų———			
58	Orbit, optics and coupling correction	660 days		-		
69	Technical subsystems	720 days	U	-		
70	Vacuum system	64+0 days	V	-	V	
80	Magnets and supports	720 day s	V	-		
96	Power systems	240 days				
100	650 MHz RF system	420 days				
107	Injection and extraction systems	600 day s	V – – – – – – – – – – – – – – – – – – –	-		
112	Fast feedback systems	120 days		, 		
117	Abort systems hardware	340 days	U			
122	Instrumentation and diagnostics	720 days	V	a a	8 8	
124	Systems integration	720 day s	V			
126	Global(?) systems	720 days	V	-		
127	Conventional facilities	480 day s				
131	Control systems	120 days				
134	Cryogenics systems	120 day s				
137	Survey and alignment	720 days	ų – ų – – – – – – – – – – – – – – – – –	# #		
139	Commissioning plan	720 day s	V	8 8 9		
141	Test facilities	720 days	U U	-		
142	ATF	720 day s	V V	-		
146	CesrTA	720 day s	U	-	:	

Work Package: Impedance

14	Impedance and impedance-driven instabilities	760 days
15	Construct impedance model from scaled component designs	4 mons
16	Model instabilities using preliminary impedance model	3 mons
17	Make instability estimates based on preliminary impedance model	0 days
18	Refine and improve impedance models and instability calculations	12 mons
19	Construct impedance model using real technical designs	4 mons
20	Understand impact of single-bunch and coupled-bunch instabilities, and injection/ext	3 mons
21	Specify improvements to lattice and vacuum designs	0 days
22	Refine and improve impedance models and instability calculations	6 mons
23	Finalise impedance model	3 mons
24	Characterise instabilities using detailed impedance model	3 mons
25	Predict instability characteristics and thresholds	0 days
26	Electron cloud	648 days

ilc iic

Work Package: Vacuum

70	Vacuum system	640 day:
71	Preliminary vacuum system specifications	1 mor
72	Set baseline specifications for vacuum system (subject to ecloud studies)	0 day:
73	Prepare initial technical designs of vacuum system components	6 mon:
74	Develop initial technical designs of vacuum system components	7 mon:
75	Finalise technical designs of vacuum system components	3 mon:
76	Technical designs of vacuum system components	0 day:
77	Optimise vacuum system for cost and technical performance	7 mon:
78	Make essential modifications to technical designs of vacuum system components	6 mon:
79	Vacuum system technical design finalised, documented and costed	0 day
		I

• •

"Critical Information Exchange" example 1

14	Impedance and impedance-driven instabilities	760 days
15	Construct impedance model from scaled component designs	4 mons
16	Model instabilities using preliminary impedance model	3 mons
17	Make instability estimates based on preliminary impedance model	0 days
18	Refine and improve impedance models and instability calculations	12 mons
19	Construct impedance model using real technical designs	4 mons
20	Understand impact of single-bunch and coupled-bunch instabilities, and injection/ext	3 mons
21	Specify improvements to lattice and vacuum designs	0 days
22	Refine and improve impedance models and instability calculations	6 mons
23	Finalise impedance model	3 mons
24	Characterise instabilities using detailed impedance model	3 mons
25	Predict instability characteristics and thresholds	0 days
26	Electron cloud	648 days
39	Ion effects	600 days
41	Other collective effects	600 days
47	Acceptance	700 days
58	Orbit, optics and coupling correction	660 days
69	Technical subsystems	720 days
70	Vacuum system	640 days
71	Preliminary vacuum system specifications	1 mon
72	Set baseline specifications for vacuum system (subject to ecloud studies)	0 days
73	Prepare initial technical designs of vacuum system components	6 mons
74	Develop initial technical designs of vacuum system components	7 mons
75	Finalise technical designs of vacuum system components	3 mons
76	Technical designs of vacuum system components	0 days
77	Optimise vacuum system for cost and technical performance	7 mons
78	Make essential modifications to technical designs of vacuum system components	6 mons
79	Vacuum system technical design finalised, documented and costed	0 days
00	Advances and annual and	700 4


```
Work Package: Electron Cloud
```

1		
26	Electron cloud	648 days
27	Evaluate electron cloud mitigation techniques	15 mons
28	Specify baseline ecloud mitigation techniques	0 days
29	Start construction of test dipole chamber	15 mons
30	Finalise construction of test dipole chamber	2 mons
31	Test ecloud mitigation techniques in dipole chamber	6 mons
32	Start construction of test wiggler chamber	15 mons
33	Finalise construction of test wiggler chamber	2 mons
34	Test ecloud mitigation techniques in wiggler chamber	6 mons
35	Model ecloud build-up with baseline mitigation techniques	1 mon
36	Benchmark electron cloud instability codes	9 mons
37	Model electron cloud instabilities	6 mons
38	Validate design for ecloud mitigation, and predict ecloud instability safety margins	0 days
- 00	Lan affasta	600 davia

"Critical Information Exchange" example 2

26	Electron cloud	648 days
27	Evaluate electron cloud mitigation techniques	15 mons
28	Specify baseline ecloud mitigation techniques	0 days
29	Start construction of test dipole chamber	15 mons
30	Finalise construction of test dipole chamber	2 mons
31	Test ecloud mitigation techniques in dipole chamber	6 mons
32	Start construction of test wiggler chamber	15 mons
33	Finalise construction of test wiggler chamber	2 mons
34	Test ecloud mitigation techniques in wiggler chamber	6 mons
35	Model ecloud build-up with baseline mitigation techniques	1 mon
36	Benchmark electron cloud instability codes	9 mons
37	Model electron cloud instabilities	6 mons
38	Validate design for ecloud mitigation, and predict ecloud instability safety margins	0 days
39	lon effects	600 days
41	Other collective effects	600 days
47	Acceptance	700 days
58	Orbit, optics and coupling correction	660 days
69	Technical subsystems	720 days
70	Vacuum system	640 days
71	Preliminary vacuum system specifications	1 mon
72	Set baseline specifications for vacuum system (subject to ecloud studies)	0 days
73	Prepare initial technical designs of vacuum system components	6 mons
74	Develop initial technical designs of vacuum system components	7 mons
75	Finalise technical designs of vacuum system components	3 mons
76	Technical designs of vacuum system components	0 days
77	Optimise vacuum system for cost and technical performance	7 mons
78	Make essential modifications to technical designs of vacuum system components	6 mons
79	Vacuum system technical design finalised, documented and costed	0 days
0٨	Hennets and summaries	700 dave

Work Package: Coupling Correction

58	Orbit, optics and coupling correction	660 days
59	Experimental studies of orbit and coupling correction	24 mons
60	Demonstrate 2 pm vertical emittance	0 days
61	Make initial estimates of alignment sensitivities in baseline lattice	7 mons
62	Initial estimates of alignment sensitivities	0 days
63	Specify and evaluate possible orbit and coupling correction schemes	9 mons
64	Evaluate impact of ground vibration and long-term motion	6 mons
65	Initial estimate of impact of ground vibration and long-term motion	0 days
66	Optimise orbit and coupling correction scheme	6 mons
67	Finalise crbit and coupling correction scheme	3 mons
68	Correction systems documented and costed	0 days
00	Te sharts at such substance	700 davia

Work Package: Magnets and Supports

1		
80	Magnets and supports	720 days
81	Specify magnets	1 mon
82	Develop technical designs for main magnets	12 mons
83	Technical designs for main magnets	0 days
84	Optimise magnet designs for cost and performance	10 mons
85	Finalise designs of main magnets	6 mons
86	Magnet designs documented and costed	0 days
87	Develop technical designs for magnet supports	6 mons
88	Model magnet supports response to vibration and long-term stability	4 mons
89	Characterisation of magnet supports response to vibration and long-term stability	0 days
90	Optimisation of design of magnet supports	4 mons
91	Finalise design of magnet supports	4 mons
92	Magnet supports documented and costed	0 days
	Million and an a	100 -1

ILC 2007

"Critical Information Exchange" example 3

1	I Contraction of the second	
58	Orbit, optics and coupling correction	660 days
59	Experimental studies of orbit and coupling correction	24 mons
60	Demonstrate 2 pm vertical emittance	0 days
61	Make initial estimates of alignment sensitivities in baseline lattice	7 mons
62	Initial estimates of alignment sensitivities	0 days
63	Specify and evaluate possible orbit and coupling correction schemes	9 mons
64	Evaluate impact of ground vibration and long-term motion	6 mons
65	Initial estimate of impact of ground vibration and long-term motion	0 days
66	Optimise orbit and coupling correction scheme	6 mons
67	Finalise orbit and coupling correction scheme	3 mons
68	Correction systems documented and costed	0 days
69	Technical subsystems	720 days
70	Vacuum system	640 days
80	Magnets and supports	720 days
81	Specify magnets	1 mor
82	Develop technical designs for main magnets	12 mons
83	Technical designs for main magnets	0 days
84	Optimise magnet designs for cost and performance	10 mons
85	Finalise designs of main magnets	6 mons
86	Magnet designs documented and costed	0 days
87	Develop technical designs for magnet supports	6 mons
88	Model magnet supports response to vibration and long-term stability	4 mons
89	Characterisation of magnet supports response to vibration and long-term stability	0 days
90	Optimisation of design of magnet supports	4 mons
91	Finalise design of magnet supports	4 mons
92	Magnet supports documented and costed	0 days
	Minutes	100 1-1-1

Milestones...

	fask Name	Duration	2007 2008 Otr 1 Otr 2 Otr 3 Otr 4 Otr 1 Otr 2 0	2009 20 Dtr 3 Otr 4 Otr 1 Otr 2 Otr 3 Otr 4 Ot	10 r 1 Otr
Þ	Optics and beam dynamics	760 days			۳Ţ
Ť	Lattice design	600 days	ý n		•
Ť	Set lattice specifications	0 days	01/06	•	
Ť	Impedance and impedance driven instabilities	760 days	ų – – – – – – – – – – – – – – – – – – –		_,
Ť	Electron cloud	648 days	Ŭ.		•
Ť	Other collective effects	600 days	Ŭ.		
Ť	Acceptance	700 days	Ŭ.		,
Ť	Orbit, optics and coupling correction	660 days	Ů		r
÷	Fechnical subsystems	720 days	Ů.	•	
+	Vacuum system	640 days	Ŭ.		•
\uparrow	Magnets and supports	720 days	Ŭ.	•	
1	Wiggler	120 days	ů mu		•
rt.	Injection and extraction systems	600 days	ů – – – – – – – – – – – – – – – – – – –		
8	Abort systems hardware	340 days	Ŭ.		
T)	Gobal(?) systems	720 days	Ŭ.	•	
-	Control systems	120 days	ů mu		•
-1	Set baseline specifications for vacuum system (subject to ecloud studies)	0 days	28/06		
÷	Initial estimates of intrabeam scattering	0 days	▲15/11		
÷	Initial estimates of Touschek lifetime	0 days	15/11		
÷	Wiggler design documented and costed	0 days	¥ 15/11		
+	Technical design for abort dumpt	0 davs	15/11		
+	Control systems documented and costed	0 days	¥ 15/11		
+	Make instability estimates based on preliminary impedance model	0 davs	13/12		
÷	Preliminary estimates of dynamic aperture	0 days	13/12		
÷	Specify magnet field quality	0 days	X 1312		
	Specify physical apertures	0 days	X 13/12		
÷	Initial estimates of alignment sensitivities	0 days	A 13/12		
+	Select and "freeze" baseline lattice design	0 days	10/01		
-	650 MHz RF system	420 days			
3	Fast feedback systems	120 davs		· · · · ·	
-	"Freeze" baseline design of injection/extraction lines	0 davs	▲ 03/0	4	
+	'Freeze' baseline design of abort line	0 days		4	
8	Conventional facilities	480 days		*	
5	Longitudinal fast feedback systems documented and costed	0 davs		26/06	

Milestones... (continued)

ID	Task Name	Duration	2007	2008	2009	2010
117	Transverse fast feedback systems documented and costed	0 days	Otr1 Otr2 Otr3 Otr4	Qtr 1 Qtr 2 Qtr 3 Qtr 4	Otr1 Otr2 Otr3 Otr4	Otr 1 Otr 2 Otr 3
29	Specify baseline ecloud mitigation techniques	0 days		24/07		
122	Abort systems documented and costed	0 davs		▲ 18/0		
77	Technical designs of vacuum system components	0 days		16	x-10	
90	Characterisation of magnet supports response to vibration and long-term stability	0 days		¥ 16		
104	Technical design of RF cavities	0 days			13/11	
84	Technical designs for main magnets	0 days		.	11/12	
97	Power systems	240 days		Ľ		
55	Understand acceptance limitations using technical designs of magnets	0 days		•	▲ 05/03	
61	Demonstrate 2 pm vertical emittance	0 days			▲ 02/04	
66	Initial estimate of impact of ground vibration and long-term motion	0 days			a 02/04	
22	Specify improvements to lattice and vacuum designs	0 days			▲ 28/05	
93	Magnet supports documented and costed	0 days			▲ 23/07	
107	RF system documentation and costing	0 days			20/08	
135	Cryogenics systems	120 days			Ŭ.	T I
14	Lattice designs finalised and documented	0 days			♦ 17/0	9
111	Demonstrate injection and extraction system performance	0 days			↓17/0	9
112	Complete costing and documentation for injection and extraction systems	0 days			17/0	9
80	Vacuum system technical design finalised, documented and costed	0 days			•	12/11
100	Power systems documented and costed	0 days			▲	12/11
39	Validate design for ecloud mitigation, and predict ecloud instability safety margins	0 days				24/11
69	Correction systems documented and costed	0 days			•	10/12
58	Confirm acceptance margin on injected beam	0 days				• 04/02
131	Conventional facilities documented and costed	0 days				• 04/02
137	Cryogenics systems documented and costed	0 days				• 04/02
87	Magnet designs documented and costed	0 days				• 04/03
26	Predict instability characteristics and thresholds	0 days				\$ 29/04

How to define a Work Package?

The plan has evolved from an original version that was clearly unmanageable, to one that "feels" manageable. The characteristics that make it feel manageable are:

- 1. Each Work Package contains one or more (fairly) continuous activities (though not necessarily at a constant level of effort).
- 2. The number of parallel activities within each Work Package is minimised; ideally, there is only one activity going on within each Work Package at any given time.
- 3. The number of points of "Critical Information Exchange" is minimised.

Note: there is no explicit distinction made between activities on different points of the scale from basic R&D (e.g. electron cloud mitigation) to design of relativelystraightforward components (e.g. quadrupoles).

Next Steps

- Complete the list of Tasks and Milestones, filling in all the dependencies and connections.
- Match the Resources to the Work Packages.
 - This will provide a reality check.
 - Information on Damping Rings resources and activities has recently been updated: we have (most of) the information that we need.
- Meanwhile: discuss all this with the EDR Task Force...

ic