ILC BeamDiagnostics using BeamCal and GamCal A.Sapronov JINR, LNP DESY, FCAL LCWS-2007 Hamburg May 30 – June 3 - · Beam parameters reconstruction - · Geant4 simulation for BeamCal - · Comparison of different readout set-ups - · Status and summary #### BP reconstruction #### Simulation chain: - Produce beamstrahlung pairs with GUINEA-PIG - Run those through detector simulation - From obtained energy distribution restore the observables - Reconstruct initial beam parameters using Moore-Penrose inverse (algorithm - A.Stahl) #### Observables: - 1. Total energy - 2. Radial moment - 3. Inv. radial moment **NEW** \longrightarrow (4. Ey) - 5. Up-Down imbalance - 6. Right-Left imb. - 7. Diagonal imb. - 8. Energy in r>R_out - 9. N/E - 10. Phi moment - 11. Inv. phi moment - 12., 13. Forw-Back asymmetries #### Beam parameters: - 1. Bunch sizes - 2. Emittances - 3. Beam offsets - 4. Waist shifts - 5. Bunch rotations - 6. Profile rotations - 7. Number of particles LCWS'07, Hamburg ## BeCaS (BeamCal Simulation) ## Specification: - Geant4.8.0 physics - bcalrc configure file - 0, 2, 14, 20 mrad beam crossing angle options - Various magnetic field types (solenoid, DiD, antiDiD from fieldmap.txt) - Root tree output ### 20 mrad, DiD Face energy distr-n: ## single parameter reconstruction, whole calorimeter data | | | | reconstructed | | | | | | |-----------------|--------------------------------------|------|-------------------|-------------------|------------------------------|-------------------------------|--|--| | bp | unit | nom. | 2mrad^* | 20mrad DiD | 20 mrad DiD $+ E_{\gamma}$ | 14mrad antiDiD + E_{γ} | | | | σ_z | $\mu\mathrm{m}$ | 300 | 300.75 ± 4.56 | 307.98 ± 4.72 | 299.80 ± 1.69 | 301.09 ± 1.65 | | | | ε_x | $10^{-6} \mathrm{m} \; \mathrm{rad}$ | 10 | 11.99 ± 7.61 | ±_ | _ ± _ | 9.94 ± 2.16 | | | | Δx | nm | 0 | 4.77 ± 14.24 | 4.55 ± 8.14 | 4.57 ± 8.13 | -3.84 ± 11.08 | | | | α_v | rad | 0 | 0.002 ± 0.016 | 0.010 ± 0.025 | -0.001 ± 0.025 | -0.071 ± 0.017 | | | (*) - simplified simulation by Ch. Grah High significance of information from gammas for bunch sizes reconstruction. ## readout schemes: single layer. readout schemes: clusterization and digitization. | | | | RO scheme (6th layer) | | | | | | |-------------------|-------------------------------------|-------|--------------------------|-------------------------|-------------------------|---------------------------|--|--| | bp | unit | nom. | detailed | digitized | 16 channel | 32 channel | | | | σ_x | nm | 655.0 | 653.72 ± 1.29 | 653.84 ± 1.35 | 653.97 ± 1.30 | 654.04 ± 1.27 | | | | $\Delta \sigma_x$ | nm | 0. | -1.72 ± 2.01 | -1.87 ± 2.08 | -1.65 \pm 2.01 | -1.65 ± 2.02 | | | | σ_z | $\mu\mathrm{m}$ | 300. | 300.90 ± 1.69 | 300.35 ± 1.63 | 300.48 ± 1.56 | 300.39 ± 1.47 | | | | $\Delta \sigma_z$ | $\mu\mathrm{m}$ | 0. | -0.59 \pm 1.82 | -1.26 \pm 1.97 | -0.41 ± 1.77 | -0.33 ± 1.82 | | | | ε_x | $10^{-6} \mathrm{m} \ \mathrm{rad}$ | 10 | 10.18 ± 2.62 | $9.71 \pm {f 2.62}$ | 10.18 ± 2.62 | 10.18 ± 2.62 | | | | Δx | nm | 0 | -5.35 \pm 11.52 | -9.82 ± 12.63 | -7.26 ± 9.80 | -7.78 ± 9.76 | | | | α_v | rad | 0 | -0.056 ± 0.019 | -0.119 ± 0.017 | -0.076 ± 0.025 | -0.077 \pm 0.025 | | | Digitization: 256 steps, 0.04 GeV each Bhabhas: 0.13 events/BX (COMPHEP) Clusterization patterns: - Geant4-based simulation for BeamCal written - Beam diagnostics data generated for 20mrad DiD and 14mrad antiDiD (using GRID - very fast!) - New observables added - Photon data included into observables and found to be very efficient. - Different readout patterns are being compared to find out most effective for beam diagnostics purposes. #### **SUMMARY** - Beamstrahlung photons data from GamCal appear to have a significant influence on beam parameters resolution. - Using single layer for BP reconstruction is almost as precise as complete BeamCal - Also clusterization and digitization does almost no impact on the precision