

ILC BeamDiagnostics using BeamCal and GamCal

A.Sapronov

JINR, LNP DESY, FCAL

LCWS-2007 Hamburg May 30 – June 3

- · Beam parameters reconstruction
- · Geant4 simulation for BeamCal
- · Comparison of different readout set-ups
- · Status and summary

BP reconstruction

Simulation chain:

- Produce beamstrahlung pairs with GUINEA-PIG
- Run those through detector simulation
- From obtained energy distribution restore the observables
- Reconstruct initial beam parameters using Moore-Penrose inverse (algorithm - A.Stahl)

Observables:

- 1. Total energy
- 2. Radial moment
- 3. Inv. radial moment

NEW \longrightarrow (4. Ey)

- 5. Up-Down imbalance
- 6. Right-Left imb.
- 7. Diagonal imb.
- 8. Energy in r>R_out
- 9. N/E
- 10. Phi moment
- 11. Inv. phi moment
- 12., 13. Forw-Back asymmetries

Beam parameters:

- 1. Bunch sizes
- 2. Emittances
- 3. Beam offsets
- 4. Waist shifts
- 5. Bunch rotations
- 6. Profile rotations
- 7. Number of particles

LCWS'07, Hamburg

BeCaS (BeamCal Simulation)

Specification:

- Geant4.8.0 physics
- bcalrc configure file
- 0, 2, 14, 20 mrad beam crossing angle options
- Various magnetic field types (solenoid, DiD, antiDiD from fieldmap.txt)
- Root tree output

20 mrad, DiD Face energy distr-n:

single parameter reconstruction, whole calorimeter data

			reconstructed					
bp	unit	nom.	2mrad^*	20mrad DiD	20 mrad DiD $+ E_{\gamma}$	14mrad antiDiD + E_{γ}		
σ_z	$\mu\mathrm{m}$	300	300.75 ± 4.56	307.98 ± 4.72	299.80 ± 1.69	301.09 ± 1.65		
ε_x	$10^{-6} \mathrm{m} \; \mathrm{rad}$	10	11.99 ± 7.61	±_	_ ± _	9.94 ± 2.16		
Δx	nm	0	4.77 ± 14.24	4.55 ± 8.14	4.57 ± 8.13	-3.84 ± 11.08		
α_v	rad	0	0.002 ± 0.016	0.010 ± 0.025	-0.001 ± 0.025	-0.071 ± 0.017		

(*) - simplified simulation by Ch. Grah

High significance of information from gammas for bunch sizes reconstruction.

readout schemes: single layer.

readout schemes: clusterization and digitization.

			RO scheme (6th layer)					
bp	unit	nom.	detailed	digitized	16 channel	32 channel		
σ_x	nm	655.0	653.72 ± 1.29	653.84 ± 1.35	653.97 ± 1.30	654.04 ± 1.27		
$\Delta \sigma_x$	nm	0.	-1.72 ± 2.01	-1.87 ± 2.08	-1.65 \pm 2.01	-1.65 ± 2.02		
σ_z	$\mu\mathrm{m}$	300.	300.90 ± 1.69	300.35 ± 1.63	300.48 ± 1.56	300.39 ± 1.47		
$\Delta \sigma_z$	$\mu\mathrm{m}$	0.	-0.59 \pm 1.82	-1.26 \pm 1.97	-0.41 ± 1.77	-0.33 ± 1.82		
ε_x	$10^{-6} \mathrm{m} \ \mathrm{rad}$	10	10.18 ± 2.62	$9.71 \pm {f 2.62}$	10.18 ± 2.62	10.18 ± 2.62		
Δx	nm	0	-5.35 \pm 11.52	-9.82 ± 12.63	-7.26 ± 9.80	-7.78 ± 9.76		
α_v	rad	0	-0.056 ± 0.019	-0.119 ± 0.017	-0.076 ± 0.025	-0.077 \pm 0.025		

Digitization: 256 steps, 0.04 GeV each Bhabhas: 0.13 events/BX (COMPHEP)

Clusterization patterns:

- Geant4-based simulation for BeamCal written
- Beam diagnostics data generated for 20mrad DiD and 14mrad antiDiD (using GRID - very fast!)
- New observables added
- Photon data included into observables and found to be very efficient.
- Different readout patterns are being compared to find out most effective for beam diagnostics purposes.

SUMMARY

- Beamstrahlung photons data from GamCal appear to have a significant influence on beam parameters resolution.
- Using single layer for BP reconstruction is almost as precise as complete BeamCal
- Also clusterization and digitization does almost no impact on the precision