High Level RF (HLRF) EDR Planning

LCWS Meeting DESY May 31, 2007

Ray Larsen, SLAC & Shigeki Fukuda, KEK For the ILC HLRF Collaboration

HLRF Collaboration

- Spokesperson & Asia HLRF Technical Systems Lead: S. Fukuda, KEK
- Americas HLRF TS Lead: R. Larsen, SLAC
- Contributors:
 - DESY: W. Bialowons, S. Choroba
 - KEK: M. Akemoto, H. Hayano, T. Shidara, M. Akemoto
 - FNAL: B. Chase, C. Jensen, J. Reid. M. Champion, O. Nezhevenko, H. Pfeffer, D. Wolff
 - SLAC: C. Adolphsen, R. Cassel, C. Corvin, C. Nantista, M. Neubauer

Outline

I. EDR Working Definition **II.** Industrialization Assumptions **III. HLRF Factory Model Assumptions IV. Proposed HLRF Work Packages** V. Example Work Package VI. Conclusions VII. Appendix: HLRF R&D Status Summary

I. EDR Working Definition

- EDR to be completed in two years, i.e. 2010.
- Detailed technical and cost plans considerably more mature than RDR.
- Schedule, new cost estimate, funding profile.
- Provide solid basis for international funding requests, implying
 - Technology down-selects recommendations in hand
 - Industry based cost estimates in hand to compare with estimates

L C International Linear Collider

EDR Tasks R&D to Pre-Production, 2007-10

- Management Level Tasks
 - 1. Develop Work Packages for R&D
 - 2. Develop specifications as basis for bid packages
 - 3. Identify industrial vendors for advanced prototypes (Design for Manufacture, DFM)
 - 4. Procure pre-production prototypes
 - 5. Complete EDR documentation
 - 6. Recommend technology down-selection

L C International Linear Collider

EDR Tasks 2 R&D to Pre-Production, 2007-10

- *R&D Tasks (in parallel)*
 - 1. Complete Alternate Conceptual Design prototypes
 - 2. Complete DFM designs, specifications, bid packages
 - 3. Evaluate industrial DFM prototypes

International Linear Collider

II. HLRF Industrialization Assumptions

- All major system components will be provided by industry
- Industrialization has at least two meanings:
 - 1. Development & deployment of industry process for new designs of an exotic nature, e.g. SCRF structures, Sheet Beam Klystron
 - 2. Identification & qualification of vendors for new designs of non-exotic nature, e.g. Modulator, Charging System, Controls & Interlock Protection System

General Procurement Strategy

- ILC is developing and will <u>own</u> designs from ACD process
- Specifications will be developed for "Build to Spec" procurement
- Vendors may choose to offer any design that meets specifications including ACD designs
- Owning designs important for long term future:
 - Modulators, Distribution have virtually no follow-on business so future procurements could be problematical
 - Klystrons have significant follow-on business but much smaller; owning a design is excellent insurance against future vendor ability to deliver (e.g. PEPII experience)
- HLRF cost models assumed procurement split 50-50 between 2 vendors. (Actual ratios would vary.)

International Linear Collider

III. HLRF Factory Model Assumptions

- Factory Models developed for Modulators, Klystrons and Distribution for cost modeling in 2006:
 - Factories to provide fully tested units essentially ready for final prep and installation to tunnels
 - Factories to be provided with necessary test equipment, support personnel
 - ILC inspectors at factory sign off on testing before shipment allowed
 - Delivery to on-site staging area for nominal inspection that no damage occurred in shipping, plus final prep before releasing to installation

LCWS May 31, 2007

HLRF Factory Models 2

• Some Details:

- All components to be built to specifications (electrical power, cooling, mechanical form factor, drive requirements, test procedures)
- Modulator factory to be provided with fully instrumented test stations, test loads
- Klystron factory to be provided with klystron test stations, RF driver system, water loads
- Integrated Distribution systems to be delivered packaged for quick final assembly, mounting on cryo-module in staging area for cold tuning prior to moving to tunnel

IV. Proposed Work Packages (WP's)

- Prepare Separate WP's for Modulator, Klystron, Distribution
 - Develop DFM design, build prototype, execute test program
 - Develop collaboration specifications for bid packages
 - Ideally each region lets bid for evaluation unit or units, shares costs, testing experience
 - Note: These could be different designs!
 - Procure, test, apply to L-Band test programs
 - Modify bid packages for pre-production quantity procurement

LCWS May 31, 2007

Proposed WP's 2

- Charger system, Controls-Interlock system also WP candidates for delivery of pre-tested integrated systems
 - Could also be part of modulator, klystron systems respectively

V. Example Work Package: Marx

	High Level RF Work Packages	2006	2007	2008	2009	2010	2011	2012	2013	2019
		RDR	EDR			Approval		Construction		Commiss.
1	EDR Work Packages									
	Marx Modulator									
	Complete 08-09 Work Packages		•							
	Down-select technology			•						
	Prepare bid packages for 3 Regions			•						
	Place factory orders in 3 Regions			•						
	Receive units in 3 Regions				•					
	Implement Test Stands 3 Regions				•					
	Test Stand operation 3 Regions									
2	R&D Work packages									
	Marx Modulator									
	Complete prototype power test			•						
	Complete DFM design			•						
	Complete DFM Prototype			•						
	Implement DFM Prototpe on Test Stand				♦					

LCWS May 31, 2007

WP for Marx DFM Prototypes

VI. Conclusions

- EDR is window of opportunity for strong inter-regional growth in ILC HLRF
 - HLRF has strong Alternate R&D program to improve costs, availability
 - Strong inter-region contributions can be advanced through shared Work Packages
 - WP's for major HLRF components R&D, industrialization proposed for discussion
 - Early collaboration agreements & commitments necessary for EDR success

LCWS May 31, 2007

END OF SLIDES

L C International Linear Collider

VII. Appendix: HLRF R&D Status Summary

- SLAC ACD Modulator, Klystron, Distribution R&D Progress
- KEK Latest Progress HLRF System
- FNAL Improved Baseline Modulator for SRF Test Facility

International Linear Collider

HLRF ACD R&D Status Summary

- R&D program on Alternate Conceptual Designs underway for three major components to improve reliability, cut costs by ~40-50%
 - Marx Modulator
 - Sheet Beam Klystron
 - Integrated Waveguide Distribution
- Prototype designs also planned for:
 - High Availability Modulator Charger
 - Klystron Interlocks and Controls

Modulator R&D

- Motivation:
 - Reduce costs, size, weight
 - Improve Availability via N+1 redundancy
- Approach:
 - Marx generator using solid state switches, modular structure, on-board diagnostics for "intelligent platform management" of maintenance and repair

Marx Modulator Prototype

LCWS May 31, 2007

Klystron R&D

• Motivation:

- 10MW MBK Klystrons new, complex to build, likely to be less reliable than single beams due to many more parts, braze joints, single points of failure
- Several potential suppliers but costs likely to remain high.
- Approach:
 - Sheet Beam Klystron (SBK) has worked at W-Band but not a refined, efficient design. Goal is to design drop-in replacement 10 MW SBK. On paper, smaller size, lower weight, lower cost

LCWS May 31, 2007

10 MW Sheet Beam Klystron Model

SBK Klystron Size Compare

Waveguide Distribution R&D

• Motivation:

- Reduce costs by integrated design to eliminate expensive components, reduce flanges, simplify final assembly and lower installation costs
- Approach:
 - Develop system to feed cavities in pairs via novel Variable Tap-Off (VTO) mode rotation coupler; eliminate expensive circulators & tuners

LCWS May 31, 2007

L C International Linear Collider

Variable Tap-Off (VTO)*

Charger, Interlocks & Controls

- HA Modulator Charger:
 - High Availability architecture with central unit delivering 80% voltage to 6 satellites with 20% top-off switching supplies; 50% capacity in central unit for failover redundancy, cost optimized
- HA Klystron Interlocks & Controls:
 - Integrated package with local programmable protection controller; RF, temperature, vacuum, water flow interlocks; modular electronics package with diagnostics & redundancy, cost optimized

International Linear Collider

KEK New Bouncer Modulator

Larsen-Fukuda

L International Linear Collider

KEK Bouncer Modulator Sta.2

LCWS May 31, 2007

L C International Linear Collider

ACD Hybrid Distribution (KEK) (Circulators Eliminated)

LCWS May 31, 2007

KEK Distribution 2

LCWS May 31, 2007

Improved Bouncer Modulator (FNAL)

Capacitor Banks

IGBT Redundant Switch

LCWS May 31, 2007

HLRF EDR Planning Larsen-Fukuda Bouncer Choke