

Emphasis on test beam results

José Repond Argonne National Laboratory

LCWS 2007, DESY, May 30 – June 3, 2007

Members of the

Collaboration

Goals of the Collaboration

CALICE Projects and the Concepts

^{*} Tail catcher and Muon Tracker

PFAs and Calorimetry

Fact

Particle Flow Algorithms improve energy resolution compared to calorimeter measurement alone (see ALEPH, CDF, ZEUS...)

How do they work?

Particles in jets	Fraction of energy	Measured with	Resolution [σ ²]	
Charged	65 %	Tracker	Negligible	
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	≻ 18%/√E
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}	J
Confusion	The real	challenge	≤ 0.04 ² (goal)	

Minimize confusion term

High segmentation

Can PFAs achieve the ILC goal? Maximize segmentation of the calorimeter readout

O(<1 cm²) in the ECAL O(~1 cm²) in the HCAL \rightarrow O(10⁷ – 10⁸) channels for entire ILC calorimter

YES!

Status of the various projects

Calorimeter	Technology	Detector R&D	Physics Prototype	Technical Prototype
ECALs	Silicon - Tungsten	Well advanced	Exposed to beam	Design started
	MAPS - Tungsten	Started		
	Scintillator - Lead	Well advanced	Exposed to beam	
HCALs	Scintillator - Steel	Well advanced	Exposed to beam	Design started
	RPCs - Steel	Well advanced	Almost ready to be build	(Design started)
	GEMs- Steel	Ongoing		
	MicroMegas - Steel	Started		
TCMTs	Scintillator - Steel	Well advanced	Exposed to beam	

Collaboration \rightarrow **Advantages**

Shared hardware

e.g. Si-ECAL/Scint-HCAL use same electronic readout system One steel plate stack and movable stage for all HCALs Shared mechanical structure for Si- and MAPS-ECAL

Shared software

All projects use the same DAQ software

Shared test beams

DESY group helped ECALs when testing at DESY One test beam effort at CERN involving Si-ECAL, Scint-HCAL, TCMT

Facilitates combined tests

e.g. Si-ECAL+Scint-HCAL+TCMT at CERN in 2006/2007 ECALs+HCALs+TCMT at FNAL in 2008/2010

Shared knowledge

CALICE meetings (3/year) are an excellent forum to report/discuss progress/ideas

CALICE Test Beam Activities

DESY electrons 1 – 6 GeV

Silicon-ECAL Scintillator ECAL Scintillator HCAL TCMT

CERN electrons and pions 6 – 120 GeV

Silicon-ECAL Scintillator HCAL TCMT (complete)

FNAL protons at 120 GeV

3 RPCs 1 GEM 10 RPCs+4 GEMs

Silicon-Tungsten ECAL

 $1 X_0(W) = 3.5 \text{ mm}$

Electronic Readout

Front-end boards located outside of module Digitization with VME – based system (off detector)

AL Physics prototype

3 structures with different W thicknesses
30 layers; 1 x 1 cm² pads
12 x 18 cm² instrumented in 2006 CERN tests
→ 6480 readout channels

Tests at DESY/CERN in 2006

Electrons 1 – 45 GeV Pions 6 – 120 GeV

Linearity with electrons

Two different weighting schemes Non-linearity at the 1% level

Resolution with electrons

Close to expectation from MC

Transverse shower profile

Moliere radius R_M contains 90% of EM shower energy independently of energy $R_M(W) = 9 \text{ mm}$ Gap will increase $R_M(W) \rightarrow R_M^{eff}$

Study of inter-wafer gaps

Decrease in response in both x and y \sim 12 % Developed a correction procedure

Effect on resolution

Correction improves resolution → eliminates asymmetric tail Resolution away from gap still better

MAPS ECAL

Monolithic Active Pixel Detectors

In-pixel comparator and logic $50 \times 50 \ \mu m^2$ pixels $\rightarrow 10^{12}$ pixels for the ECAL

Test Sensor

. . . .

Area of 1 x 1 cm² \rightarrow ~ 28,000 pixels Testing two different architectures

Pre-shape pixel analog front-end Pre-sample pixel analog front-end

Submitted in April \rightarrow In hand by July

Extensive simulation studies

Charge collection effects Resolution versus threshold

Scintillator-Tungsten ECAL

Offers the possibility of hardware compensation

Tested different set-ups

WLSF and groves No WLSF (direct coupling) WLSF in extruded scintillator

Physics prototype

26 layers 1 x 4.5 x 0.3 cm³ scintillator strips Read out with Hamamatsu MPPCs + Scintillator-HCAL electronics

Գ

Scintillator HCAL

First calorimeter to use SiPMs

Physics prototype

38 steel plates with a thickness of 1 X₀ each Scintillator pads of 3 x 3 \rightarrow 12 x 12 cm² \rightarrow ~8,000 readout channels

Electronic readout

Silicon Photomultipliers (SiPMs) Digitization with VME-based system (off detector)

Tests at DESY/CERN in 2006

23/38 readout planes Electrons 1 – 45 GeV Pions 6 – 50 GeV

Calibration is important!

Corrections for

Light yield non-uniformity SiPM gain variations (temperature, V_{bias}) SiPM non-linearity of response Non-uniformity in readout electronics

$$A[MIP] = f_{resp} \left(A[ADC] \underbrace{I}_{G} \underbrace{I}_{M} \right)$$

gain calibration G from low LED light: \oplus intercalibration I from LED light: \oplus non-linearity correction \mathbf{f}_{resp} from ITEP curves: \rightarrow Pixel uncertainty:

 $\sigma_{\rm M}\approx 3\%$

SATURATION CURVE SIPMS WAFER 4-11 <u>sexid</u> 1400 esuodsat 1200 1000 800 600 400 200 0 50 100 150 200 250 0 Light, MIP

Light yield

Determined from ratio of MIP response and gain Average ~16 pix/MIP RMS ~ 20%

Analysis of electron data

Important cross check before tackling hadron data More sensitive to SiPM non-linearity corrections

Number of hits and their energies

More hits in data than MC

Non-linearity corrections not yet perfect at high hit energies

Electron data: Longitudinal shower profiles

Pretty good agreement with prediction Shower maximum earlier in data: more dead material in beam line?

18

Analysis of pion data

Smaller hit energy

 \rightarrow Less sensitive to SiPM non-linearity corrections

Analysis of inclusive and contained events

Use TCMT to reject events with leakage

Response

Small residuals < 0.5%

Resolution

Fit contained data in the range ot ±1.5 σ

Shower Profiles

For different π energies between 6 and 20 GeV Requirement of MIP signal in ECAL

Transverse shape

Comparison with simulation forthcoming...

Tail Catcher Muon Tracker (TCMT)

TCMT

Steel absorber: layers 1 - 8: t = 2 cm 9 - 16: t = 10 cm Scintillator strips of 5 x 100 x 0.5 cm³ Alternate x, y orientations Complete TMCT in October 2006 CERN run

Electronic readout

SiPMs as for scintillator HCAL Same electronic system as scintillator HCAL

Combined analysis

Adding TCMT energies clearly improve resolution

20 GeV π

Digital HCAL

Active elements considered

Resistive Plate Chambers (RPCs): R&D (virtually) complete Gas Electron Multipliers (GEMs): R&D ongoing <u>MicroMegas: R</u>&D initiated

RPCs and GEMs were tested in FNAL test beam

Physics prototype

{16 mm steel plates + 4 mm copper (cooling) } x 38 Re-use stack from scintillator-HCAL

Electronic readout system

1 x 1 cm² pads with digital (single-bit) readout

 → Large number of channels (400,000 for physics prototype)
 One-bit (digital) resolution with on-detector ASIC
 Currently preparing Vertical Slice Test
 if augesetful initiate construction of physics prototype

 \rightarrow if successful initiate construction of physics prototype

Vertical Slice Test

Involves 10 RPCs and 2 GEMs

~ Same electronic readout system as physics prototype section Tests with cosmic rays and in FNAL test beam (June/July 2007)

Current status

xЗ

DCON

SCON

DCOI

x6

x12

1000 cosmic Ray Events Collected Cosmic ray test stand and test beam stack ready RPCs and GEMs partially built and tested Electronic readout system being commissioned

Front-end ASIC (DCAL chip) fully tested Pad boards fabricated (no assembly) Front-end boards: 2/12 assembled and tested Data concentrators: 2/12 assembled and tested Data collector: 3/1 assembled and tested Timing and Trigger module: 1/1 being teste DAQ software taking data Offline analysis almost ready Gas and HV systems ready MoU with FNAL for test beam

Towards Technical Prototypes

Very Front-end Electronics

Development of on-detector digitization ASICs Power pulsing (reduction of power consumption)

Si-W ECAL

Scintillator E/HCAL

	e.g. ECAL	
Detector Interface (DIF)		
 Sub-detector specific, in conjunction with detector groups 		
• DIF to LDA		
 Generic, Copper links (25Mbit) 		
Link/Data Aggregator (LDA)		
– Data format		
 Clock/Commands fan-out 	LDA	
• LDA to ODR opto-links		
Off-Detector Receiver (ODR)		
• ODR to disk	Opto	
 PCI-Express driver software 	ODR	
Local Software DAQ		
Full blown Software DAQ		
	Driver	

Digital HCAL

2nd generation data acquisition

Development of new architecture

Using new tools, such as

High-speed networking Optical switches

. . . .

Conclusions

Test beam activities with physics prototypes

	Project	2007b	2008a	2008b	2009a	2009b
ECAL	Si-W	CERN test beam	FNAL test beam			
	MAPS	1 st prototype chip		2 nd prototype chip	DESY test beam	
	Scintillator			FNAL test beam		
HCAL	Scintillator	CERN test beam	FNAL test beam			
	RPC	Vertical slice test in FNAL test	Physics prototype construction	FNAL test beam		
	GEM	Vertical slice test In FNAL test beam	Further R&D on GEMs Phys proto cons		Physics prototype construction	FNAL test beam
	MicroMegas		1 plane			
ТСМТ	Scintllator	CERN test beam	FNAL test beam			

+ further R&D, technical prototype designs, construction & testing...²⁹