

SiD MDI Update

Tom Markiewicz/SLAC LCWS'07 / DESY 31 May 2007

Semi-recent developments affecting SiD MDI Design

- Push-Pull
 - Separate cryostats for QD and QF magnets
 - QD0 carried by detector at optimized L*
 - Cantilevered support tube concept dead
 - QF never moves & z of QF same for all detectors (z=9.5m: see Y. Nosochkov talk tomorrow)
 - Assume cryo supply of QD0 must move with SiD
- BNL magnet engineering (two talks by B. Parker tomorrow)
 - Well developed design for 380mm Ø QD0 magnet cryostat (L*=4.5m) with integrated anti-solenoid
 - Discussions & early estimates of required size & location of service cryostats for QD0 (heat exchanger, pump lines, current leads, etc.) have begun
- SiD Detector changes
 - VXD in 1.6m long cryostat with integrated forward tracking
 - Higher angle FWD tracking begins at r>r(QD0,FCAL)
 - Update of FCAL (=Lumical+Beamcal) to provide increased coverage & overlap
 - Beampipe size/shape between VXD and Lumical subject of intense debate
- Integration & support issue cartoons for discussion
 - Space for FCAL readout and access for VXD services (power, fiber,..)
 - FCAL+QD0 cryostat support
 - On/off beamline access
 - Assembly feasibility (flange location & space requirements)
- Background Updates (all by Takashi Maruyama, SLAC)
 - 14 mrad beamline bkgnd calcs. for pairs, rad. bhabhas & SR (older SiD VXD & tracking design)
 - Minimum radius of VXD and Lumical due to pairs considering DID/Anti-DID and IP parameters
 - Systematic study of Δz (Lumical- Beamcal) and thickness/location of W masking (begun)

Plan View - Details

B. Parker et al, BNL

QDO cryostat with a force neural antisolenoid compatible with L* of up to 4.5 m.

Plan views are drawn at beams' common midplane; dimensions are as indicated in millimeters.

5 of 30

SiD MDI

2007.05.31 DESY LCWS

QD0 Cryostat in SiD @ L*=3.664m

Nosochkov Study: Fix QF1 @ 9.5m, L* chosen by Detector Concept: Study Extraction Losses, Collimation & Optics Sensitivity

Nominal positions near IP for push-pull

Sid MDI

2007.05.31 DESY LCWS

OFEX2A

Brett Parker's Schematics

2007.05.31 DESY LCWS

SiD MDI

SiD MDI

SiD MDI

FCAL Beam Pipe Discussions Bill Morse, BNL

LHCAL

BeamCal

 SiD FCAL group focused on ONE Device which covers 30-80mrad and to a first approximation ignores LUMI aspects of BEAMCAL (inspired by LCD Design)

Vacuum

LumiCal

LumiCal Inner Edge	≈30mrad about outgoing beam	0.1	••	Ļ		
LumiCal Outer Edge	≈113mrad about 0mrad (ECAL)	Ê 0		******	*****	ļ
LumiCal Fiducial Region	≈40-80mrad about outgoing beam	×	••••••••	****	*****	••••
BeamCal Outer Edge	≈40mrad about outgoing beam	-0.1		****	r	
LumiCal	≈25 X_0 Silicon - Tungsten	-0.2				
BeamCal	≈25 X ₀ Rad-hard Silicon or Diamond - Tungsten	1.5		z (m)		3

2007.05.31 DESY LCWS

Study Pair distribution at Z = 168 cm to find minimum radius of beampipe and acceptance gain if LumiCal centered on Extraction Line

- Beam parameters Nominal, Low Q, High Y, Low P, High Lumi
- Solenoid field strength 5 Tesla vs. 4 Tesla
- Crossing angle (14 mrad) + DID/ANTI-DID

ILC 500 GeV Nominal beam parameters + 5 Tesla

2007.05.31 DESY LCWS

T. Maruyama, SLAC

2007.05.31 DESY LCWS

Pair Radius in cm at Z=168 cm

	4 Tesla			5 Tesla			
	ANTI-DID	NO DID	DID	ANTI-DID	NO DID	DID	
Nominal	5.2 / <mark>4.7</mark>	5.1 / 5.5	5.8 / <mark>6.5</mark>	4.7 / 4.1	4.4 / <mark>5.1</mark>	5.3 / <mark>6.1</mark>	
Low Q	4.7 / 4.2	4.4 / <mark>5.1</mark>	5.3 / <mark>6.0</mark>	4.2 / 3.8	3.8 / <mark>4.6</mark>	4.8 / <mark>5.6</mark>	
High Y	4.6 / 4.2	4.6 / <mark>5.1</mark>	5.5 / <mark>6.0</mark>	4.3 / 3.9	4.1 / 4.6	4.9 / <mark>5.7</mark>	
Low P	6.3 / <mark>6.0</mark>	6.2 / <mark>6.8</mark>	6.8 / <mark>7.6</mark>	5.7 / 5.3	5.5 / <mark>6.1</mark>	6.4 / 7.0	
High Lumi	7.0 / <mark>6.6</mark>	6.8 / 7.3	7.4 / <mark>8.2</mark>	6.2 / <mark>5.9</mark>	6.1 / <mark>6.7</mark>	6.7 / 7.5	

Radius in black is measured from solenoid axis (x,y) = (0., 0.). Radius in red is measured from extraction line (x,y) = (-1.176 cm, 0.)

2007.05.31 DESY LCWS

SiD MDI

T. Maruyama, SLAC

LUMON acceptance

- Inner radius of LUMON can be smaller than 8.1 cm used previously
 - Nominal + 5 Tesla: 8.1 cm \rightarrow 5.0 cm (30 mrad)
 - 4 Tesla \rightarrow +3 mrad
 - Low P \rightarrow +6 mrad
 - High Lumi \rightarrow +9 mrad \rightarrow 6.5 cm (39mrad)

- \rightarrow 5.5 cm (33mrad)
- \rightarrow 6.0 cm (36mrad)
- Centering LUMON on the extraction line has an advantage only when ANTI-DID is used.

Finding the pair edge

SiD MDI

T. Maruyama, SLAC

Current Beam pipe is designed for

ILC 500 GeV Nominal + 5 Tesla

For 4 Tesla, R=1.2 cm is tight and 43 mrad is too small. R=1.4 cm and 110 mrad beam-pipe would work.

2007.05.31 DESY LCWS

SiD MDI

T. Maruyama, SLAC 24 of 30

Current Beam pipe is not compatibe with the Low P or High Lumi options.

2007.05.31 DESY LCWS

Study Background as Function of BeamCal z

SiD MDI

- LumiCal
 - Z=156.75 168 cm
 - R_{inside}=6cm
- Beampipe

T. Maruyama, SLAC

- Original 43 mrad cone + cylinder
- M1 geometry is the same.

SID MDI

SiD MDI

- Due to excellent work by Brett Parker & BNL cryo-engineering team and systematic studies done by Takashi Maruyama a SiD MDI design is being developed with "common sense" "engineering" proposals from Breidenbach, Burrows, TWM
- Everything presented is solely to aid discussion, nothing final
- Looking forward to September IR Engineering workshop and beginning of "real engineering"

Bonus Material Follows

Detector background update for L*=3.51 m, L*(ext)=5.5m

Takashi Maruyama

Updates

- SiD Detector with 14 mrad crossing angle
 5 Tesla solenoid field map + Anti-DID field
- L*=3.51 m and L* (ext)=5.50 m
- ILC 500 GeV Nominal beam parameters
- Sync radiations from FF quads
 - No sync radiations in the beamline apertures.
 - Collimation depth
- e+/e- background in vertex detector
- Photon background in Si tracker
- Neutrons in vertex detector

14 mrad crossing geometry in Geant 3 and FLUKA

Sync radiations

- Back track 250 GeV beam from IP to SF1 without sync radiation, then track from SF1 to IP with sync radiation generation.
- Look at sync radiations at IP, Z=295 cm (Low Z), and Z=656 cm (Extraction Quad exit).

Collimation depth

- First extraction quad constrains the collimation depth.
- Consistent with Frank Jackson (BILCW07)
 - $\quad 11.9\sigma_x \ 70.7\sigma_y \ in \ red \ lines$
- Collimation depth cannot be defined by just two numbers.— The elliptical curve in (nx, ny) must be used.
- Does the collimation in the collimation section actually achieve this collimation depth?
- Need to study re-population outside the collimation depth.

Pair background in Tracker

- e+/e- directly hitting VXD and Si Tracker.
 - e+/e- can spiral many times; multiple VXD hits
- e+/e- backscattering from BeamCal is ~10% of VXD hits.
- Photons from beam pipe and VXD
- Photons from BeamCal
 - M1 aperture and length are important

2007.05.31 DESY LCWS

• Use 20 statistically independent bunches.

- Bunch-to-bunch fluctuation is much larger than the crossing angle difference or DID dependence.

• e+/e- VXD hits come primarily from pairs directly reaching the vertex detector layers.

• Different L* designs should not have any significant effect.

2007.05.31 DESY LCWS

VXD Hits / BX

Photons into Si Tracker

- Secondary photons generated in BeamCal dominate the tracker background.
 - The more energy dumped in BeamCal, the more photons.
- Smaller crossing angle is better.
- Anti-DID can reduce the photon rate by a factor of two; comparable to 2 mrad crossing.
- Different L* design should not affect the photon rate.

2007.05.31 DESY LCWS

Neutrons from pairs

		Hits/cm ² /BX	Hits/cm ² /1x10 ⁷ sec	22.5	-	Neutron origins
	No DID	$(3.6 \pm 0.2) \times 10^{-3}$	5.0x10 ⁸	22.5		
	Anti-DID	(2.4 ± 0.2) x10 ⁻³	3.4x10 ⁸	20	-	
	DID	(4.1 ± 0.2) x10 ⁻³	5.7x10 ⁸	17.5	- - - - -	BeamCal
				12.5	-	
				10	· · ·	
Ne	Neutrons from radiative Bhabhas					
		Hits/cm ² /BX	Hits/cm ² /1x10 ⁷ sec	5	N/1	Beampipe

	Hits/cm ² /BX	Hits/cm ² /1x10 ⁷ sec
No DID	$(1.6 \pm 0.4) \times 10^{-4}$	0.22x10 ⁸
Anti-DID	$(0.3 \pm 0.2) \times 10^{-4}$	0.04x10 ⁸
DID	$(2.0 \pm 0.6) \times 10^{-4}$	0.27x10 ⁸

- Neutrons that reach the vertex detector are mostly generated in the BeamCal. ٠
- Anti-DID can reduce the neutron flux. ٠
- Different L* design should not affect the neutron flux. •

2007.05.31 DESY LCWS

SiD MDI

M1

200

250

300

350

Z (cm)

400

450

500

2.5

0