Introduction

Motivation

Strategy

Method

Result

Summary

Four-loop QCD corrections to the ρ parameter

Christian Sturm

Dipartimento di Fisica Teorica Università di Torino

based on PRL 97, 102003 (2006) and Nucl. Phys. B766, 246 (2007) In collaboration with: K.G. Chetyrkin, M. Faisst, J.H. Kühn, P. Maierhöfer

- I. Introduction & Motivation
- II. Strategy & Methods
- III. Results & Implications
- IV. Summary & Conclusion

International Linear Collider Workshop, Hamburg 2007

International Linear Collider Workshop, Hamburg 2007

C. Sturm

International Linear Collider Workshop, Hamburg 2007

C. Sturm

Introduction			Summary

Introduction

Fermion-doublet:

1-loop
$$\delta
ho = rac{3 \, G_F}{8 \sqrt{2} \pi^2} \left(m_t^2 + m_b^2 + 2 \, rac{m_b^2 \, m_t^2}{m_t^2 - m_b^2} \, \log(rac{m_b^2}{m_t^2})
ight)$$

A.J.G. Veltman

~> Establish limit on the mass splitting within one fermion doublet

Consider $m_t \gg m_b \rightarrow \text{leading } m_t$ behaviour:

$$\delta
ho = \mathbf{3} \, \frac{\mathbf{G}_{\mathsf{F}} \boldsymbol{m}_{\mathsf{I}}^2}{8\sqrt{2}\pi^2} \equiv \mathbf{3} \, \mathbf{x}_t$$

 2-loop QCD corrections A. Djouadi, C. Verzegnassi; B.A. Kniehl, J.H. Kühn, G. Stuart
 3-loop QCD corrections L. Avdeev, J. Fleischer, S. Mikhailov, O. Tarasov; K.G. Chetyrkin, J.H. Kühn, M. Steinhauser
 2-loop electroweak corr. J.J. van der Bij F. Hoogeveen; R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci, A. Vicere; J. Fleischer, O. Tarasov, F. Jegerlehner
 3-loop mixed EW/QCD corr. J.J. van der Bij, K.G. Chetyrkin, M. Faisst, J. Seidensticker;

C. Sturm

International Linear Collider Workshop, Hamburg 2007

Motivation		Summary

Motivation

appears e.g. in muon decay:

■ *ρ*-parameter depends on SM parameters: $M_t, M_H, \alpha_s, \alpha, ...$ ⇒ prediction of $M_W^{theory} \leftrightarrow M_W^{experiment}$

Constraint on the Higgs mass

C. Sturm

Motivation		Summary

Motivation

M. Awramik, M. Czakon, A. Freitas, G. Weiglein

International Linear Collider Workshop, Hamburg 2007

C. Sturm

Motivation		Summary

Motivation

- Higher order corr. induce shift:
- Current uncertainty of M_W :
- Anticipated precision at ILC:
- 3-loop QCD-correction shift:

 $\delta M_W =$ $\delta M_{\rm W}^{\rm exp}$ 35 MeV $\delta M_{\rm W}^{\rm exp,LC}$ \sim 6 MeV $\delta M_{\rm M}^{3-\rm loop}$ $\sim -11 \text{ MeV}$

⇒ Study four-loop QCD corrections

In this talk: four-loop QCD-corrections: $\mathcal{O}(G_F m_t^2 \alpha_s^3)$ Classification:

non-singlet

singlet

singlet contribution \rightarrow Y. Schröder, M. Steinhauser at $\mathcal{O}(G_F m_t^2 \alpha_s^2)$ in MS-scheme singlet-contribution is numerically dominant

International Linear Collider Workshop, Hamburg 2007

C. Sturm

	Strategy		Summary

Strategy & Methods

Strategy: I.) Reduce all integrals to master integrals II.) Solve master integrals

I.) Reduction:

Integration-by-parts:

K.G. Chetyrkin, F.V. Tkachov

$$0 = \int [d^D k_1] \dots [d^D k_4] \quad \partial_{(k_j)_{\mu}} \left(k_l^{\mu} \ \boldsymbol{I}_{\alpha\beta} \right) \ , \quad j, l = 1, \dots, \text{loops=4}$$

 $\alpha\beta$: Generic integrand with propagator powers $\alpha = \{\alpha_1, \dots\}$ and scalar-product powers $\beta = \{\beta_1, \dots\}$

Laporta-Algorithm:

S. Laporta, E. Remiddi

- nod: IBP-identities for explicit numerical values of $\alpha_{,\beta}$
 - Introduction of an order among the integrals
 - Solving a linear system of equations

Here:About 7 million IBP-identities generated and solvedProblem:Sizable number of master integrals: 63 !

C. Sturm

→ 13 of master integrals known from previous calculations:

- Solution with high precision numerics Y. Schröder, A. Vuorinen with difference equation method S. Laporta
- Solution with the method of ε-finite basis K.G. Chetyrkin, M. Faisst, C.S., M. Tentyukov
- other contributions:

D.J. Broadhurst; S. Laporta; Y. Schröder, M. Steinhauser; B.A. Kniehl, A.V. Kotikov, A.I. Onishchenko, O.L. Veretin

International Linear Collider Workshop, Hamburg 2007

... additional 12 master integrals are "simple", they are factorized or can be obtained by combining results from literature D.J. Broadhurst; D.I. Kazakov; I. Bierenbaum, S. Weinzierl; K.G. Chetyrkin, P.B. Baikov; S. Bekavac

 \rightsquigarrow On remains with solving 38 master integrals:

International Linear Collider Workshop, Hamburg 2007

			Methods		Summary
II. Method:	Master in	tegrals wit	th differen	ce equati	ONS 6. Laporta

Raise one propagator to symbolic power *x*:

e.g.
$$M = \bigoplus \longrightarrow M(x) = \bigoplus \sum_{j=0}^{\infty} \int \frac{[dk_1] \dots [dk_4]}{D_1^x D_2 \dots D_8}$$

Use IPB and Laporta alg. to construct difference equations
 $\sum_{j=0}^{R} p_j(d, x) M(x - j) = \text{combination of subtopologies of } M(x)$

Ansatz: factorial series $M(x) = \mu^x \sum_{s=0}^{\infty} a_s \frac{\Gamma(x+1)}{\Gamma(x+1+s-K)}$

■ recursion formula for $a_s \rightarrow \text{sum up to specified}$ $s_{max} \sim 1000 - 2000$

• better convergence for large $x \rightarrow$ use DE to get M(1)

		Methods	Summary
Evample	rocult		

- Example result

 - High numerical precision (usually > 30 digits)
 However, construction of DEs increasingly tedious for masters with many lines

	Methods	Summary

Method: ε -finite basis K.G. Chetyrkin, M. Faisst, C.S., M. Tentyukov

Problem: Coefficient functions c_{ii} in $I_i = \sum_i c_{ii} M_i$ can have "spurious" poles Arise while solving IBP-identities through division by (d-4). Master integrals with spurious poles as coefficient need to be known in higher order in ε But: Choice of master integrals is not unique Idea: Select a new basis with finite coefficient functions Solution: " ε -finite basis"

 \rightsquigarrow Advantage: Members need only be evaluated up to order ε^0

K.G. Chetyrkin, M. Faisst, C.S., M. Tentyukov

Members of ε -finite basis can be found among the set of initial integrals I_i

Algorithm:

- 1 Express all initial integrals in terms of standard masters $I_i = \sum_i C_{ii} M_i$
- 2 Choose equation with highest ϵ -pole in a coefficient c_{ii}
- 3 Solve it for M
 - \rightarrow All coefficients in the new equation are finite
- 4 Replace M_i in all equations and treat I_i as new master integral
- Repeat steps 2–4 until all coefficients are finite 5

C. Sturm

C. Sturm

International Linear Collider Workshop, Hamburg 2007

C. Sturm

International Linear Collider Workshop, Hamburg 2007

Method: Padé-method

Fleischer, Tarasov; Broadhurst, Baikov

Idea: Perform integration over 3 loop momenta "semi-analytically" and the 4th numerically:

4) =
$$\int [dq] \frac{1}{q^2 - m_{cut}^2} \stackrel{q}{=} 31 - = \int [dq] \frac{1}{q^2 - m_{cut}^2} F(q^2)$$

- Perform low and high-energy expansion of $F(q^2)$

- Reconstruction of $F(q^2)$ through Padé-Approximation

$$F(q^2) \longrightarrow [i/j](q^2) = \frac{a_0 + a_1 q^2 \dots a_n q^{2n}}{b_0 + b_1 q^2 \dots b_m q^{2m}}$$

 $[i/j](q^2)$: Same low- and high-energy behavior like $F(p^2)$

- Numerical integration over Padé-Approximation
- Choose convenient integrals for evaluation by exploiting freedom in choice of *e*-finite basis
- Pole part analytically
 - \Rightarrow Allows analytical cancellation of (UV-) ϵ -poles

C. Sturm

International Linear Collider Workshop, Hamburg 2007

		Result	Summary

Four-loop Result

$$\delta \rho^{\overline{\text{MS}}} = 3x_t \left(1 - \frac{\alpha_s}{\pi} \, 0.19325 + \left(\frac{\alpha_s}{\pi}\right)^2 \left(-4.2072 + 0.23764 \right) + \left(\frac{\alpha_s}{\pi}\right)^3 \left(-3.2866 + 1.6067 \right) \right)$$

New result induces shift of the *W*-mass: $\sim 2 \,\text{MeV}$

Anticipated experimental precision of future colliders:

ILC: 6 MeV

 \Rightarrow theoretical uncertainty well below the experimental precision

Confirmed by an independent calculation R. Boughezal, M. Czakon

C. Sturm

International Linear Collider Workshop, Hamburg 2007

		Result	Summary

Four-loop Result

$$\delta \rho^{\text{os}} = 3X_t \left(1 - \frac{\alpha_s}{\pi} 2.8599 + \left(\frac{\alpha_s}{\pi}\right)^2 \left(-4.2072 - 10.387 \right) + \left(\frac{\alpha_s}{\pi}\right)^3 \left(\pm 7.9326 - 101.0827 \right) \right)$$

4-loop singlet: Y. Schröder, M.Steinhauser

New result induces shift of the W-mass: $\sim 2 \,\text{MeV}$

Anticipated experimental precision of future colliders:

ILC: 6 MeV

 \Rightarrow theoretical uncertainty well below the experimental precision

Confirmed by an independent calculation R. Boughezal, M. Czakon

C. Sturm

International Linear Collider Workshop, Hamburg 2007

Summary & Conclusion

- Four-loop contribution of $\mathcal{O}(G_F m_t^2 \alpha_s^3)$ from top- and bottom-quarks to the ρ -parameter in pQCD has been computed
- All appearing integrals have been reduced to master integrals
- The master integrals have been calculated using 2 different methods:
 - Standard basis : Method of difference equations
 - *ε*-finite basis : Padé-method

New analytical information at least for the pole-part of the four-loop masters has been obtained

- The four-loop result induces a shift of 2 MeV into M_W
 - \implies theoretical uncertainty well below the anticipated accuracy of M_W at ILC ($\delta M_W^{\text{exp.}} \sim 6 \text{ MeV}$)

International Linear Collider Workshop, Hamburg 2007