Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook

Light quark mass effects in the on-shell renormalization constants

Dirk Seidel

Institut für Theoretische Teilchenphysik Universität Karlsruhe

in collaboration with Bekavac, Grozin, Steinhauser

June 2nd, 2007

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
0000	00000	0000000		

Why on-shell renormalisation constants?

current and future experiments

high accuracy for quark masses needed

- $\mathsf{Br}(B \to X e \bar{\nu}) \propto m_b^5$
- pole mass can only be extracted with ambiguity of order Λ_{QCD} \rightsquigarrow Renormalons
- trade the pole-mass in for MS-mass: still large perturbative corrections
- ~→ use "short distance" mass definitions:
 - potential subtracted mass [Beneke '98]
 - 1S mass [Hoang, Teubner '98]
 - kinetic mass [Bigi et al. '97]

Introduction Renorma	lization constants S	Scalar Integrals	Results	Conclusion and Outlook
00000			00	0

Potential Subtracted Mass

perturbative series of Coulomb potential is better behaved in momentum space than in coordinate space \rightsquigarrow use cut-off for Fourier transformation

subtracted potential

$$V(r, \mu_f) = V(r) + 2 \,\delta m(\mu_f)$$

$$\delta m(\mu_f) = -\frac{1}{2} \int_{|q| < \mu_f} \frac{d^3 q}{(2\pi)^3} \tilde{V}(q)$$

 \rightsquigarrow potential subtracted mass

$$m_{\mathsf{PS}}(\mu_f) = M_{\mathsf{pole}} - \delta m(\mu_f)$$

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
0000	00000	0000000	00	0

Relation between PS and MS mass

$$m_{\mathsf{PS}}(\mu_f) = M_{\mathsf{pole}} - \delta m(\mu_f)$$

= $\left(\frac{M_{\mathsf{pole}}}{\bar{m}(\bar{m})}\right) \bar{m}(\bar{m}) - \delta m(\mu_f)$
= $\bar{m}(\bar{m}) \left[1 + \frac{\alpha_s(\bar{m}(\bar{m}))}{\pi} C_F \left(1 - \frac{\mu_f}{\bar{m}(\bar{m})}\right) + \mathcal{O}\left(\alpha_s^2\right)\right]$

- large perturbative corrections in $\frac{M_{\text{pole}}}{\bar{m}}$ cancel with $\delta m(\mu_f)$ \rightsquigarrow precise determination of $\overline{\text{MS}}$ mass
- \bullet relation between pole and $\overline{\text{MS}}$ mass is necessary

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
0000				

Outline

2 Scalar Integrals

ntroduction 0000	Renormalization constants ●0000	Scalar Integrals 0000000	Results 00	Conclusion and Outlo
Renor	malized propagator			
	$S_F(q) = \frac{-i2}{\not q - m_{q,0} + i}$	$\frac{\Sigma_2^{OS}}{\Sigma(q, M_q)} \stackrel{q^2 \to -}{\longrightarrow}$	$\stackrel{M_q^2}{\to} \frac{-i}{\not q - M_q}$	
with	$m_{q,0} = Z_m^{OS}$	$M_q , \qquad \psi_0 = 0$	$\sqrt{Z_2^{OS}}\psi$	
	$\Sigma(q, m_q) = M_q \Sigma_1(q)$	$(q^2, M_q) + (q - q)$	M_q) $\Sigma_2(q^2)$	$, M_q)$
• Z	Z_m^{OS} is IR–finite, gauge-	-invariant quant	tity, Z_2^{OS} is	not
Mass	relation			

$$m_{q,0} = Z_m^{\overline{\text{MS}}} \bar{m}_q \longrightarrow \frac{Z_m^{\text{OS}}}{Z_m^{\overline{\text{MS}}}} = \frac{\bar{m}_q(\mu)}{M_q}$$

• no ϵ -poles left

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
	0000			

Computation of the renormalization constants

• introduce 4-vector Q with q = Q(1+t) and $Q^2 = M_q^2$

• Renormalisation: insertion of mass counterterms $\propto M_q \Sigma_1(M_q^2, M_q)$ in lower order diagrams

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
	00000			

On-Shell Quark Mass and Wave Function Renormalisation

- necessary input for (multi-) loop calculations
- Z_m determined from on-shell self-energy diagrams
- Z_2 determined from derivative of self-energies

 \rightsquigarrow subset of on-shell self energy diagrams

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
	00000			

Dimensional Regularisation ['t Hooft, Veltman '72]

- complex number of dimensions: $d=4-2\epsilon$
- regulates UV and IR divergencies

 Z_m and Z_2 are known up to $\mathcal{O}\left(lpha_s^3
ight)$ in massless approx.

- $\mathcal{O}(\alpha_s)$: Z_m [Tarrach '80]
- $\mathcal{O}\left(\alpha_s^2\right)$:
 - Z_m [Gray, Broadhurst, Grafe, Schilcher '90]
 - Z_m and Z_2 [Broadhurst, Gray, Schilcher '91]
- $\mathcal{O}\left(\alpha_s^3\right)$:
 - Z_m: semi-numerical [Chetyrkin, Steinhauser '99, '00], estimation of charm-mass effects [Hoang '00]
 - Z_m and Z_2 : analytical [Melnikov, van Ritbergen '00]
 - independent confirmation of analytical results [Marquard, Mihaila, Piclum, Steinhauser '07]

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
	00000			

Diagrams at $\mathcal{O}\left(lpha_{s}^{3}
ight)$ with nonzero light quark mass

• great challenge: two-scale three loop diagrams

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
		000000		

Generic Topologies

- after taking trace: scalar integrals
- Z₂ includes derivative of self-energy and is gauge-dependent
 → up to 5 dots and 5 powers of scalar products needed

Integration By Parts

$$\int d^{3d}\ell_{1,2,3} \, \frac{d}{d\ell_i^{\mu}} \, v^{\mu} \, I\left(q^2 = M_q^2, M_q, M_f\right) = 0$$

• use relations to reduce integrals to master integrals

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
		000000		

Feynman diagrams

- generated with QGRAF [Nogueira '91]
- various topologies are identified with q2e and exp [Harlander '97, Seidensticker '99]

Laporta Algorithm [Laporta '96]

- Crusher: Implementation written in C++ [Marquard, DS '06]
- uses GiNaC for simple manipulations
- coefficient simplification done with Fermat
 ~> interface from [Tentyukov '06]
- automated generation of the IBP identities
- complete symmetrization of the diagrams
- use of multiprocessor environment

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
		000000		

Master Integrals

0000 00000 000000 00 0	Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
			0000000		

Calculation of Master Integrals

• two independent methods used

Mellin–Barnes

$$\frac{1}{(K-M)^{\lambda}} = \frac{1}{(K)^{\lambda}} \frac{1}{\Gamma(\lambda)} \frac{1}{2\pi i} \int_{\gamma} ds \left(-\frac{M}{K}\right)^{s} \Gamma(-s) \Gamma(\lambda+s)$$

- trade massive propagator for massless one
- simplify Feynman integral representations

 \rightsquigarrow at most 4-dimensional representation for complicated integrals (calculated with MB.m [Czakon '05])

• partially checked with AMBRE [Gluza, Kajda, Riemann '07]

- homogenious part trivial
- solution expressable in terms of "standard" HPL's
- ullet in principle up to any desired order in ϵ
- initial conditions known from $n_m = 0$ calculation

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
		0000000		

$$-\frac{2\text{Zeta}(3)}{\epsilon}$$

$$\begin{split} &+ \frac{4}{3} \pi^2 \mathsf{HPL}(\{0\}, z) z^2 - 12 \mathsf{HPL}(\{0, 0\}, z) z^2 + 16 \mathsf{HPL}(\{0, 0, 0\}, z) z^2 \\ &- \pi^2(z-2) z + \frac{10}{3} \pi^2 \mathsf{HPL}(\{-2\}, z) - \frac{5}{3} \pi^2 (z^2 - 1) \mathsf{HPL}(\{-1\}, z) \\ &- \frac{1}{3} \pi^2 (z^2 - 1) \mathsf{HPL}(\{1\}, z) + \frac{2}{3} \pi^2 \mathsf{HPL}(\{2\}, z) - 8 \mathsf{HPL}(\{-3, 0\}, z) \\ &- 4 (z^2 + 1) \mathsf{HPL}(\{-2, 0\}, z) + 2(z+1)(3z-1) \mathsf{HPL}(\{-1, 0\}, z) \\ &+ (-6z^2 + 4z + 2) \mathsf{HPL}(\{1, 0\}, z) + 4 (z^2 + 1) \mathsf{HPL}(\{2, 0\}, z) + 8 \mathsf{HPL}(\{3, 0\}, z) \\ &+ 16 \mathsf{HPL}(\{-2, 0, 0\}, z) + 8 \mathsf{HPL}(\{-2, 1, 0\}, z) + (8 - 8z^2) \mathsf{HPL}(\{-1, 0, 0\}, z) \\ &+ (4 - 4z^2) \mathsf{HPL}(\{-1, 1, 0\}, z) + (4 - 4z^2) \mathsf{HPL}(\{1, -1, 0\}, z) \\ &+ 8 (z^2 - 1) \mathsf{HPL}(\{1, 0, 0\}, z) + 8 \mathsf{HPL}(\{2, -1, 0\}, z) - 16 \mathsf{HPL}(\{2, 0, 0\}, z) \\ &+ 6 (z^2 - 2) \zeta(3) - \frac{\pi^4}{30} \end{split}$$

• Simplification and numerical evaluation done with HPL.m [Maitre '05,'07]

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
		000000		

no analytic solution for 2 topologies

$$\frac{d}{dz} = \dots + \frac{4}{M_q^2} \left(\frac{2}{z} + \frac{1}{z+1} - \frac{4}{2z-1} - \frac{4}{2z+1} + \frac{1}{z-1} \right) \xrightarrow{()}$$

- \bullet "wrong" pole structure \rightsquigarrow no transformation found
- ullet analytic results up to ϵ^{-1}
- Mellin-Barnes: 1-dimensional sums left after z-expansion

 \rightsquigarrow sufficient numerical precision for phenomenology

ntroduction	Renormalization constants 00000	Scalar Integrals 0000000	Results ●0	Conclusion and Outloo
Mass	relation			
	$z_m(\mu) = rac{Z_m^{ m OS}}{Z_m^{ m MS}} = rac{ar{m}_q(\mu)}{M_q}$	$-=1+rac{lpha_s(\mu)}{\pi}\delta z_m^{(1)}$	$+\left(rac{lpha_s(\mu)}{\pi} ight)$	$^{2} \delta z_{m}^{(2)}$
		$+\left(rac{lpha_s(\mu)}{\pi} ight)^3$	$\delta z_m^{(3)} + \mathcal{O}\left(\alpha\right)$	⁴ <i>s</i>)
$\delta z_m^{(2)} = \delta_{\alpha}^{(3)} =$	$C_F^2 z_m^{FF} + C_F C_A z_m^{FA} + C_F^2 C_A z_m^{FFA} + C_F^2 $	$_{F}T_{F}n_{l}z_{m}^{FL} + C_{F}T_{L}$	$Frn_h z_m^{FH} + C$	$E_F T_F n_m z_m^{FM}$
$C_{2m} = + C_{1}$	$F_{F}T_{F}n_{l}\left(C_{F}z_{m}^{FFL}+C_{A}z_{m}^{FL}\right)$	$AL + T_F n_l z_m^{FLL} + T_F n_l z_m^{FL} + T_F n_l z_m^{FL} + T_F n_l z_m^{FL} + T_F n_l z_m^{FLL} + T_$	$T_F n_h z_m^{FHL}$	$+T_F n_m z_m^{FML}$
$+C_{I}$ $+C_{I}$	$F_{F}T_{F}n_{h}\left(C_{F}z_{m}^{FFH}+C_{A}z_{n}^{F}\right)$ $F_{F}T_{F}n_{m}\left(C_{F}z_{m}^{FFM}+C_{A}z_{n}^{F}\right)$	$\int_{m}^{AH} + T_F n_h z_m^{FHH}$ $\int_{m}^{FAM} + T_F n_m z_m^{FM}$	$+T_F n_m z_m^F$	

- z^i_m containing factor n_m depend on ratio of OS-quark masses $z=M_f/M_q$
- $\bullet~{\rm all}~z^i_m$ depend on ${\rm ln}~\mu/M_q$

• preliminary results at $\mu=M_q$

- known results at z = 0, 1 reproduced
- z_m^{FAM} enhanced by color factor

Introduction	Renormalization constants	Scalar Integrals	Results	Conclusion and Outlook
				•

- last missing piece of 3–loop $\overline{\text{MS}}$ –on–shell relation calculated
- Laporta-implementation capable of dealing with bigger problems
- combination of analytical and numerical results sufficient for phenomenological treatment

- results for Z_2 have to be worked out
- mass shift in *b*-mass determination