

Status of the ATF Damping Ring BPM Upgrade Project

Manfred Wendt for the ATF DR BPM collaboration

ATF DR BPM Collaboration

KEK

ilr iit

- Nobuhiro Teranuma
- Junji Urakawa

SLAC

- Doug McCormick
- Justin May
- Janice Nelson
- Tonee Smith

May 31, 2007 LCWS Hamburg

Fermilab

- Charlie Briegel
- Nathan Eddy
- Bill Haynes
- Peter Prieto
- Dennis Nicklaus
- Ron Rechenmacher
- Duane Voy
- Manfred Wendt.

- Motivation
- Some background information on the ATF damping ring and it's beam parameters
- Characteristic of the ATF button-style BPM pickup
- Overview and details of the new BPM hardware
- Project history
- Preliminary results
- Next steps...
 - This presentation certainly is incomplete, in particular it does not address the tremendous firm- and software efforts related to the project!

Motivation

- ILC damping ring R&D at KEK's Accelerator Test Facility (ATF):
 - Investigation of the beam damping process (damping wiggler, minimization of the damping time, etc.)
 - Goal: generation and extraction of a low emittance beam $(\epsilon_{vert} < 2 \text{ pm})$ at the nominal ILC bunch charge
- A major tool for low emittance corrections: a high resolution BPM system
 - Optimization of the closed-orbit, beam-based alignment (BBA) studies to investigate BPM offsets and calibration.
 - Correction of non-linear field effects, i.e. coupling, chromaticity,...
 - Fast global orbit feedback(?)
 - Necessary: a state-or-the-art BPM system, utilizing
 - a broadband turn-by-turn mode (< 10 µm resolution)
 - a narrowband mode with high resolution (~ 100 nm range)

The ATF Damping Ring

Machine and Beam Parameters

Button-style BPM Pickup

Normalized horizontal and vertical potentials:

$\phi = \frac{(A+D)-(B+C)}{(B+C)}$	$\phi = \frac{(A+B)-(C+D)}{(C+D)}$
$\varphi_H = A + B + C + D$	$\varphi_V = A + B + C + D$

1D polynomial fit ("on axis" calibration):

 $Pos[mm] = 9.35\phi + 1.00\phi^3 + 7.79\phi^5$

2D polynomial fit is prepared, but not yet implemented.

May 31, 2007 LCWS Hamburg

Analog Signal Processing

May 31, 2007 LCWS Hamburg

Digital Signal Processing

ECDR-GC814 BLOCK DIAGRAM

Echotek digital receiver:

- 8-ch VME 64x module
- Analog Devices 14-bit 105 MS/s AD6645
- Each channel: Texas Instruments 4-ch GC4016 "Graychip" digital downconverter

Digital Signal Processing (cont.)

Averaging & filtering:

- 5-stage CIC, dec 4...4096
- 21-tab CFIR, dec 2 (or 1)
- 63-tab PFIR, dec 2

Wideband Mode (BW ~ 1 MHz):

- total decimation: 8
- 8-tab running ave. FIRs

Narrowband Mode (BW ~ 1 kHz):

- total decimation: 10988, t_{dec}: 158.7 μs, 1280 pt (~ 200 ms)
- 11 & 32-tab RRC FIRs

Graychip digital downconverter:

- 4 independent channels per ADC
- NCO set to f_{IF} = 15.145 MHz (downconvert to DC baseband)
- ADC clock set to 32 samples per revolution: $f_{CLK} = 32^* f_{rev} = 69.2 \text{ MHz}$
- Decimation and filtering for the broad- and narrowband operation, using CIC and FIR digital filters

Global Design Effort

May 31, 2007 LCWS Hamburg

- VME Timing module:
 - $f_{CLK} = f_{RF}^* 32/330 = 69.236$ MHz clock signals (4x)
 - t_{rev} = 462.2 ns turn marker signals (4x), 0...115 double-buckets (2.8 ns) delayable
 - To f_{RF} phase-locked f_{LO} = 729.145 MHz
 - Auxiliary f_{rev} and f_{IF} signals
- Motorola 5500 VME CPU:
 - Data collection and normalization
 - Box-car post-processing filter (20 ms)
 - Local diagnostic and control software
 - EPICS control interface
- Calibration unit (prototype):
 - − To f_{RF} phase-locked $f_{CAL} \approx 714$ MHz (Analog Devices ADF4153)
 - In-passband, through button-BPM calibration
 - 2nd Graychip channel for downconversion

- February 2006 visit: KEK/SLAC:
 - Proof of principle installation & commissioning
 - Read-out hardware for 8x button-style BPMs:
 - 4x temporary *Echotek* boards (older style, no *Graychip* DDC).
 - 8x downmix modules, plus spares.
 - LO signal generator, cabling, crates, PS, auxiliary systems.
- February 2007 visit: KEK/SLAC(3)/Fermilab(6)
 - New installation & commissioning (again 8x BPMs).
 - 6 dedicated, plus parasitic machine shifts (focus on system installation and commissioning).
- May 2007 visit: KEK/SLAC(3)/Fermilab(6)
 - Upgrade to 20x BPMs (limited by downmix module availability) in 2x VME crates.
 - 7 dedicated, plus parasitic machine shifts (focus on commissioning and some systematic beam studies).

IC Results 2007: BBA (070227, 070302)

Y BBA	ET	+/-	ATF	+/-	dET	dATF
(um)						
QF2R.10	343.38	6.44	15.15	17.10	26.9	120.3
	316.49	34.40	-105.14	174.00		
	112.68	2.99	300.89	55.70		
QF2R.11					4.8	390.6
	107.87	5.16	-89.69	165.00		
0707 10	-72.69	5.07	-172.12	85.70		
QF2R.12					19.2	625.9
	-91.84	14.20	-798.00	2040.0		
0000 12	-188.03	1.19	-177.83	323.00		
QF2R.13					13.7	95.8
	-174.37	37.20	-82.01	54.50		

May 31, 2007 LCWS Hamburg

Global Design Effort

.

- Turn-by-Turn data BPM #36 (pinger: On)
- Identifying hor. and vert. tune lines (387 kHz, 1.212 Mhz) as well as sync. tune lines (n x 9.7 kHz).
- Observed short time, broadband TBT resolution: few µm!

Results 2007: Narrowband Mode

- Optimized Narrowband Mode to remove 50Hz
 - Lengthened the *Echotek* collection time (160ms shown)
 - Apply 126 tap box and decimate filter to further average and remove 50Hz
 - Very strong 50Hz signal in horizontal but also apparent in vertical
- After filtering see 0.4 μ m RMS vert. and 1.7 μ m RMS hor. for single shot
 - Expect electronics to provide same resolution on horizontal and vertical
 - Suggests orbit motion is contributing to RMS
- Data being further analyzed using SVD technique
 - Find correlations which can be related to electronics problems or orbit motion
 - Need to understand sources of correlations

Results 2007: NB Shot-to-Shot İİL

- Shown is Raw Narrowband Data for 10 shots
 - Raw data is 160ms from 500k turn for each shot
 - Each shot was taken 1 minute apart over 10 minutes
- Observe BPM position change
 - Need to understand whether the effect is electronics or orbit

• Data filtered by 126 tap box to average and remove 50Hz

RMS (

- Observe strong orbit motion in the horizontal plane!
- Remove the motion to find "real" BPM resolution

Raw Filtered

- 400 to 200 nm range (preliminary!)

Sample (6.3kHz) BPM 40 Intensity

Sample (6.3kHz)

Arbitrary BPM Number

Results 2007: SVD Mode Examples

- SVD Mode 1
 - Clearly shows
 horizontal orbit
 motion
 - Not "BPM physical"

- SVD Mode 5
 - Shows single period in vert. BPM and 3 periods in hor. BPM
 - Seems to be "real"!

Results 2007: Resolution Limit

Theoretical:

- ADC SNR: 75 dB
- Process gain: 40.4 dB
- NF 1st gain stage: ~ 1 dB
- CAL tone level: -10 dBm
- Splitter attenuation: 6 dB
- Effective gain: ~ 100 dB
- BPM sensitivity: 240 µm/dB
- Calculated equivalent resolution: ~ 20 nm

CAL tone resolution measurement on BPM #56: ~ 30 nm(!)

Signal Attenuation [dB]

Single bunch raw ADC data (not a CW signal)

- Summer/Fall 2007:
 - Development on an improved analog front-end downmix&calibration section (production prototype), SLAC/Fermilab collaboration effort
 - Switchable input gain/attenuation
 - IF lowpass/bandpass matched to DDC Nyquist cut-off
 - 4 stage PLL CAL signal generator
 - Fully remote control (I²C, etc.)
 - Improved RF enclosure
 - Various firm- and software improvements, e.g. diagnostic layer via EPICS.
 - Reliability improvements on hard- and software.
 - 10 (12) channel timing boards

- Fall/Winter 2007:
 - Testing of the new downmix&cal prototype at ATF
 - Testing of the new timing generator modules at ATF
 - Implementation and tests of software improvements
 - Additional EPICS features
 - Time and frequency data
 - Calibration with DDC frequency hopping
 - Systematic beam studies and analysis.
 - Test of a turn-by-turn based coupling correction method (?)
 - Series production of downmix&cal modules
- Winter/Spring 2008:
 - Full system upgrade, using Fermilab *Echotek* spares (loan basis) and the new cownmix&cal modules.
 - Installation, commissioning and testing.
 - Expansion of the system to extraction-line BPMs?