

Digitization and hit reconstruction for Silicon Tracker in MarlinReco¹ <u>Sergey Shulga ²</u>, Tatiana Ilicheva³

JINR, Dubna, Russia GSU, Gomel, Belarus

LCWS07 30 May - 3 June 2007 Hamburg, Germany

¹ This work is supported by BMBF(Germany)

² shulga@mail.desy.de, ³ ilicheva@mail.desy.de

Introduction

Status of MarlinReco implementation of:

- processor for digitization of Si tracker:
 - * design : classes Detector and DetUnit,
 - * digitizer : parameters, input and output;
- clustering processor:
 - * clusterizer : parameters, input and output;
 - * pixel clustering algorithm
 - * cluster parameter estimation
 - * validation of reconstructed hits

Design of package: Processors

Design of package: Detector and DetUnit

Class Detector is container of layers and DetUnit's

Main method of Detector performs initialization of DetUnit by using GEAR xml-information.

Abstract base class DetUnit is container of sim/raw/rec and temporary hits.

DetUnit can read/write standard LCIO sim/raw/rec hits.

Detector contains digitizer and clusterizer.

The object to be digitized/clusterized is DetUnit.

There are logical reasons to include classes Detector and DetUnit in GEAR

Digitizer and clusterizer: references

Notes:

•S.Cucciarelli, D.Kotlinsky, T.Todorov, CMS Note 2002/049

•S.Cucciarelli, D.Kotlinsky, CMS IN 2004/014

Presentations:

- D.Kotlinski, Pixel Software Workshop, 11-15/01/07 (CMS)
- G.Giurgiu, P.Maksimovich, M.Swartz, Offline Pixel Meeting, 05/02/07 (CMS)
- G.Giorgiu, Pixel Workshop, 01/12/07 (CMS)
- D.Kotlinski, Pixel Software meeting, 19/09/06 (CMS)

Codes

taken from CMS software and **adapted** in LCIO/MarlinReco framework

See also our talk at

ILC Software and Tools Workshop LAL-Orsay, May 3, 2007

http://ilcagenda.linearcollider.org/conferenceDisplay.py?confId=1446

Digitizer (summary)

Parameters	default	
• Pixel sizes	0,150 × 0,150 mm	
 DetUnit thickness 	0,282 mm	
 Ionization segment length 	0.01 mm	
 Angle of Lorenz drift 	$\tan \Theta_{Lorenz} = 0.106 * B$, B = 4 Tesla	
• $\sigma_{\scriptscriptstyle diffusion}$ for drift length 0.3 mm	0.007 [mm]	
• Fired cluster widths: $\sigma_X, \sigma_Y = f(\Theta_{Lorenz}, \sigma_{diffusion})$	$[3^*\sigma_x, 3^*\sigma_y],$	
 RMS of gaussian distribution of pixel noise 	500 electrons	
 Pixel threshold in units of noise RMS for pixels 0,150 x 0,150 [mm] 	4 (2000 electrons)	
 Efficiency for single pixel 	99%	
 Efficiency for pixel double column 	99%	
Readout Chip efficiency	99.75%	
 Readout Chip sizes (in units of pixels) 	20 × 52	
Digitizer input: DetUnit with collection of sim.hits (TrackerSimHit and geometrical information: pixel X,Y sizes, thickn and number of pixels in DetUnit along X (row) and Y) in event ness, / (column).	
gitizer output: DetUnit with collection of fired pixels which are colle map < int channel, Amplitude amp > _signal, where channel is pac Amplitude cont from all sim.hits in event an	cted in ked 2-dimensional pixel number, ains total charge (in electrons) nd vector of contributing sim.hits.	

D

Clusterizer

The clusterization is performed on a matrix with size equals to the size of the pixel detector. Each cell contains the ADC count of the corresponding pixel with ADC > pixelThreshold * noiseRMS.

The search of cluster starts from seed pixels containing ADC > seedThreshold * noiseRMS.

Clusters are set of neighbour pixels including pixels which touched by corners with total cluster ADC > clusterThreshold * noiseRMS

Clusterizer input: DetUnit with collection of raw.hit (TrackerRawData) in event and geometrical information: number of pixels in DetUnit along X (row) and Y (column).

Clusterizer output: DetUnit with collection of reconstructed hits (TrackerHit)

Thresholds

Used events

- Mokka06-01
- subdetector "vxd_00":

Layer N	Distance to sensitive part, mm	Ladder length, mm	Ladder sensitive thickness, mm
1	15,78	50	0,037
2	27,28	125	0,037
3	38,28	125	0,037
4	49,28	125	0,037
5	60,28	125	0,037

• MC events: Pythia6.410, MSEL = 6, $e^+e^- \rightarrow t\bar{t} \rightarrow X$, c.m.s. energy = 500 GeV

Hit reconstruction efficiency

Pixel size, μm^2	All rec.Hits/sim.Hits	True ¹ recHits/sim.Hits	False rec.Hits /rec.Hits
25×25	0,943	0,935	0,0086
50×50	0,898	0,896	0,0015
100×100	0,869	0,868	0,0006
150×150	0,540	0,539	0,001

- Subdetector "vxd_00"
- Noises is switch on
- Inefficiencies are applyed to kill some

pixels, double columns of pixels, readout chips

True rec.hits are in distance less then 1 pixel size to

sim.hit position

PixelThreshold = 4 SeedThreshold = 5 ClusterThreshold = 6 (in units of noise RMS)

Charge

Cluster size

Cluster Parameter Estimation

- Fully documented in CMS note 2004/014 by S. Cucciarelli and D. Kotlinski

 Uses information from the first and last pixels in the cluster to determine the hit position:

$$x = x_{C} + \frac{q_{last} - q_{first}}{2(q_{last} + q_{first})} | W - W_{inner} | -LorentzShift / 2$$

- $x_{\rm c}$ geometrical x center
- q_{tirst/last} charge of first/last pixel in cluster
- W charge width = sensor width × $tan(\alpha)$ + LorentzShift
- W_{inner} inner pixels length
- Initially, incident angle α is approximately calculated assuming the track originates from detector center and goes through module center

Slide taken from talk G.Giurgiu, CMS Pixel Workshop, 01/12/2007

X, Y residuals

Errors and pulls

X, Y resolution vs. cluster size

X, Y Resolution vs. Eta (barrel)

RecHit validation

 current version of clustering processor validates all recHits obtained by using approximate hit angles from module position;

Tasks

- determination of recHit position by using incidence angles of reconstructed track
- recHit validation by using parameters of reconstructed tracks;
- errors estimation by using errors dependences on cluster sizes and on polar angle.

Summary

- Classes Detector, DetUnit and BarrelDetUnit are developed to use at digitization and clustering processors;
- **Pixel digitizer** for rectangular det. units is based on CMS Software and implemented in LCIO/MarlinReco framework;
- Pixel clusterizer for rectangular det. units including standard Cluster Parameter Estimator (CPE) is based on CMS Software and implemented in LCIO/MarlinReco framework;
- Pixel, seed and cluster thresholds are investigated
- Hit reconstruction efficiency is studied
- Validation plots for reconstructed hits are presented.

Plans

- Study hit reconstruction vs. noise, inefficiency, threshold parameters
- Improving recHit position estimators
- Development of error estimators
- Pixel and strip DetUnit classes for FTD layers
- Strip digitizers and clusterizers for FTD and SIT
- Performance study together with track finding processors.